Spontaneous natural succession in metal mine tailings is fundamental to the rehabilitation of bare tailing. Here, an abandoned rare earth element (REE) mine tailing with spontaneous colonisation by pioneer plants with different functional traits was selected. Soil nutrient cycling, fertility, organic matter decomposition as well as underground organismal communities and their multitrophic networks were investigated. Compared with the bare tailing, the colonisation with Lycopodium japonicum, Miscanthus sinensis, and Dicranopteris dichotoma increased soil multifunction by 222%, 293%, and 525%, respectively. This was accompanied by significant changes in soil bacterial and protistan community composition and increased soil multitrophic network complexity. Rhizospheres of different plant species showed distinct microbial community composition compared to that of bare tailing. Some WPS-2, Chloroflexi, and Chlorophyta were mainly present in the bare tailing, while some Proteobacteria and Cercozoa were predominantly seen in the rhizosphere. Pearson correlation and Random Forest revealed the biotic factors driving soil multifunction. Structural equation modelling further revealed that pioneer plants improved soil multifunction primarily by decreasing the microbial biodiversity and increasing the multitrophic network complexity. Overall, this highlights the importance of subterrestrial organisms in accelerating soil rehabilitation during natural succession and provides options for the ecological restoration of degraded REE mining areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134450 | DOI Listing |
Environ Sci Technol
October 2024
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Talanta
December 2024
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:
In response to the challenges associated with the chromatographic separation of polar compounds, this study aims to devise a solution by introducing a novel stationary phase. Hydrogels, characterized by a three-dimensional network structure, have aroused wide attention owing to its functional designability, multiple interaction sites and good adhesion, etc. In this work, an adhesive hydrogel functionalized silica stationary phase (Sil@PVA/TA) was synthesized using physical coating technique.
View Article and Find Full Text PDFJ Hazard Mater
July 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Spontaneous natural succession in metal mine tailings is fundamental to the rehabilitation of bare tailing. Here, an abandoned rare earth element (REE) mine tailing with spontaneous colonisation by pioneer plants with different functional traits was selected. Soil nutrient cycling, fertility, organic matter decomposition as well as underground organismal communities and their multitrophic networks were investigated.
View Article and Find Full Text PDFEnviron Sci Technol
April 2024
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
Biological nitrogen fixation (BNF) has important ecological significance in mine tailing by contributing to the initial accumulation of nitrogen. In addition to chemolithotrophic and heterotrophic BNF, light may also fuel BNF in oligotrophic mine tailings. However, knowledge regarding the occurrence and ecological significance of this biogeochemical process in mine tailings remains ambiguous.
View Article and Find Full Text PDFJ Hazard Mater
January 2024
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:
Primary ecological succession is imperative for tailing vegetation, driven notably by microbes that enhance tailing nutrient status. Yet, the roles of abundant and rare taxa in tailing primary succession remain underexplored. This study investigates these subcommunities across three succession stages (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!