Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.202311-2121LEDOI Listing

Publication Analysis

Top Keywords

electrical impedance
4
impedance tomography
4
tomography monitoring
4
monitoring tool
4
tool ventilation-induced
4
ventilation-induced lung
4
lung injury
4
electrical
1
tomography
1
monitoring
1

Similar Publications

Background: Acute and critical neurological diseases are often accompanied with elevated intracranial pressure (ICP), leading to insufficient cerebral perfusion, which may cause severe secondary lesion. Existing ICP monitoring techniques often fail to effectively meet the demand for real-time noninvasive ICP monitoring and warning. This study aimed to explore the use of electrical impedance tomography (EIT) to provide real-time early warning of elevated ICP by observing cerebral perfusion.

View Article and Find Full Text PDF

High throughput cell stiffness measurement via multiplexed impedance sensors.

Biosens Bioelectron

January 2025

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States. Electronic address:

Since physiological and pathological events change the mechanical properties of cells, tools that rapidly quantify such changes at the single-cell level can advance the utility of cell mechanics as a label-free biomarker. We demonstrate the capability to probe the population-level elastic modulus and fluidity of MDA-MB-231 cells at a throughput of up to 50 cell/second within a portable microchip. Our sensing scheme adapts a code multiplexing scheme to implement a distributed network of sensors throughout the microchip, thereby compressing all sensing events into a single electrical output.

View Article and Find Full Text PDF

Integration of Asymmetric Multi-Path Hollow Structure and Multiple Heterogeneous Interfaces in FeO@C@NiO Nanoprisms Enabling Ultra-Low and Broadband Absorption.

Small

January 2025

Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.

A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.

View Article and Find Full Text PDF

Developing persistent and smart underwater markers is critical for improving navigation accuracy and communication capabilities of autonomous underwater vehicles (AUVs). A wireless acoustic identification tag, which uses a piezoelectric transducer tuned in the broadband ultrasonic range (200-500 kHz), was experimentally demonstrated to achieve highly efficient power transfer (source-to-tag electrical power efficiency of >2% at 6 m) and concurrent high data rate and backscatter level communication (>83.3 kbit s-1, >170 dB sound pressure level at 6 m) with potential operating range ≈ 10 m based on analytical extrapolations.

View Article and Find Full Text PDF

This study aimed to examine potential changes in the anthropometric and motor characteristics of volleyball players aged 17.98 ± 0.51 years after participation in a week-long sports camp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!