As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an "antibody score", which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068210PMC
http://dx.doi.org/10.1371/journal.pdig.0000497DOI Listing

Publication Analysis

Top Keywords

vaccine-elicited antibody
8
antibody response
8
future pandemics
8
basic demographic
8
demographic health
8
features antibody
8
antibody dynamics
8
antibody
5
modeling predicting
4
predicting individual
4

Similar Publications

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Development of a two-component recombinant vaccine for COVID-19.

Front Immunol

January 2025

Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Introduction: Though COVID-19 as a public health emergency of international concern (PHEIC) was declared to be ended by the WHO, it continues to pose a significant threat to human society. Vaccination remains one of the most effective methods for preventing COVID-19. While most of the antigenic regions are found in the receptor binding domain (RBD), the N-terminal domain (NTD) of the S protein is another crucial region for inducing neutralizing antibodies (nAbs) against COVID-19.

View Article and Find Full Text PDF

A SARS-CoV-2 mucosal nanovaccine based on assembly of maltodextrin, STING agonist and polyethyleneimine.

Int J Biol Macromol

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. Electronic address:

SARS-CoV-2 has the characteristics of strong transmission with severe morbidity and mortality. Protein-based vaccines have the properties of specificity, effectiveness and safety against SARS-CoV-2. Receptor-binding domain (RBD) homotrimer affords high protection efficacy against stringent lethal viral challenge.

View Article and Find Full Text PDF

Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice.

Biomaterials

December 2024

Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA. Electronic address:

Article Synopsis
  • The study highlights the success of mRNA lipid nanoparticle (LNP) vaccines in quickly addressing urgent vaccine needs, but notes their limitations in generating mucosal responses and broad protection against variants.
  • Researchers engineered an advanced mRNA LNP vaccine that includes a novel cytokine adjuvant and influenza A antigen, resulting in strong antibody and T cell responses in mice.
  • Two different adjuvants, GIFT4 and CCL27, were shown to effectively enhance both humoral and cellular immune responses, indicating the potential of cytokine mRNA as a versatile component in mRNA vaccine formulations for improved immunity against viruses.
View Article and Find Full Text PDF

Despite many attempts, there is currently no approved vaccine to prevent Staphylococcus aureus infections. Preclinical vaccination models have failed to predict vaccine efficacy in humans as S. aureus exposure in humans imprints an immune response that is lacking in naive animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!