() is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of . Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against subsp. () and (). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on cultivar SR1 (Petite Havana) inoculated with , or subsp. (). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of , and in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with , and and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-04-24-0144-RDOI Listing

Publication Analysis

Top Keywords

antibacterial activity
12
chitosan-coated fosetyl-al
8
plants additionally
8
tobacco plants
8
symptom development
8
ch-nanofos
5
fosetyl-al nanocrystals'
4
nanocrystals' efficacy
4
efficacy colonized
4
colonized quarantine
4

Similar Publications

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .

View Article and Find Full Text PDF

is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against .

View Article and Find Full Text PDF

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!