Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λ/λ=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC) till concentrations of 50 μM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202400941DOI Listing

Publication Analysis

Top Keywords

anthracene carboximides
8
carbohydrate-functionalized anthracene
4
carboximides multivalent
4
multivalent ligands
4
ligands bio-imaging
4
bio-imaging agents
4
agents anthracene
4
carboximides acis
4
acis conjugated
4
conjugated gluco-
4

Similar Publications

Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold.

View Article and Find Full Text PDF

A CH-Controlled Colorimetric Probe Based on Anthracene Carboximide for Near-Infrared Cyanide Detection.

J Fluoresc

November 2021

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.

A chemical sensor that can induce near-infrared red-shifted response represents a promising strategy for the design and development of anion probes. In this work, novel CH-controlled colorimetric probe 3 based on anthracene carboximide was developed for near-infrared detection of cyanide. Probe 3 consisted of CHCN binding site to anthracene carboximide fluorophore, and showed a significant visual change from yellow-green (535 nm) to deep violet (825 nm) with a larger redshift (≈ 290 nm) and fluorescence quenching at 480 nm and 520 nm upon interacting with cyanide.

View Article and Find Full Text PDF

A ratiometric fluorescent probe based on anthracene carboximide was developed for direct detection of isocyanates in air. The sensing mechanism was illustrated to be variation in the photophysical properties caused by the nucleophilic reaction of the probe molecule. A number of isocyanates were conveniently detected by a test paper.

View Article and Find Full Text PDF

A couple of corrole-perylene carboximide dyads (C2-PIa and C2-PIx) have been synthesized and their photoreactivity has been evaluated. We aimed at obtaining better performances for photoinduced charge separation, both in terms of efficiency and in terms of lifetime, with respect to formerly studied systems. The energy level of the charge-separated state was tuned by selecting perylene and corrole components with diverse redox and spectroscopic properties.

View Article and Find Full Text PDF

Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores.

J Am Chem Soc

October 2004

Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113, USA.

Self-assembly of robust perylenediimide chromophores is used to produce an artificial light-harvesting antenna structure that in turn induces self-assembly of a functional special pair that undergoes ultrafast, quantitative charge separation. The structure consists of four 1,7-(3',5'-di-tert-butylphenoxy)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (PDI) molecules attached to a single 1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (5PDI) core, which self-assembles to form (5PDI-PDI4)2 in toluene. The system is characterized using both structural methods (NMR, SAXS, mass spectroscopy, and GPC) and photophysical methods (UV-vis, time-resolved fluorescence, and femtosecond transient absorption spectroscopy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!