Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of CL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310703PMC
http://dx.doi.org/10.1093/cei/uxae040DOI Listing

Publication Analysis

Top Keywords

natural killer
8
killer cells
8
cutaneous leishmaniasis
8
activating receptor
8
features senescence
8
cells
6
patients
5
expression
5
nkg2c+cd57+ natural
4
cells senescent
4

Similar Publications

Immunosenescence: Aging and Immune System Decline.

Vaccines (Basel)

November 2024

Department of Biological Sciences, Kean University, Union, NJ 07083, USA.

Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells.

View Article and Find Full Text PDF

The Killer Toxin: From Origin to Biomedical Research.

Microorganisms

December 2024

Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico.

The systems of are defined by the co-infection of two viral agents, an M virus and a helper virus. Each toxin is determined by the type of M virus (ScV-M1, ScV-M2, ScV-M28, and ScV-Mlus), which encodes a specific toxin (K1, K2, K28, and Klus). Since their discovery, interest in their potential use as antimicrobial agents has driven research into the mechanisms of action of these toxins on susceptible cells.

View Article and Find Full Text PDF

Enhancement of Human Immunodeficiency Virus-Specific CD8 T Cell Responses with TIGIT Blockade Involves Trogocytosis.

Pathogens

December 2024

Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.

Natural killer (NK) and CD8 T cell function is compromised in human immunodeficiency virus type 1 (HIV-1) infection by increased expression of inhibitory receptors such as TIGIT (T cell immunoreceptor with Ig and ITIM domains). Blocking inhibitory receptors or their ligands with monoclonal antibodies (mAb) has potential to improve antiviral immunity in general and facilitate HIV eradication strategies. We assessed the impact of TIGIT engagement and blockade on cytotoxicity, degranulation, and interferon-gamma (IFN-γ) production by CD8 T cells from persons living with HIV (PLWH).

View Article and Find Full Text PDF

The Therapeutic Potential of Physical Exercise in Cancer: The Role of Chemokines.

Int J Mol Sci

December 2024

Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil.

The global increase in cancer cases and mortality has been associated with inflammatory processes, in which chemokines play crucial roles. These molecules, a subfamily of cytokines, are essential for the migration, adhesion, interaction, and positioning of immune cells throughout the body. Chemokines primarily originate in response to pathogenic stimuli and inflammatory cytokines.

View Article and Find Full Text PDF

As the primary glial cells in the peripheral nervous system (PNS), Schwann cells (SCs) have been proven to influence the behavior of cancer cells profoundly and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Indeed, the tumor microenvironment (TME) is a critical factor that can significantly limit the efficacy of immunotherapeutic approaches. The TME promotes tumor progression in part by reshaping an immunosuppressive state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!