A Molecular Expression for "Line Tension".

Langmuir

Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.

Published: May 2024

"Line tension", a concept that features in an additional term to the Young's equation, was introduced to describe the size dependence of contact angles of nanodroplets on surfaces. Although this concept describes the observations in a succinct, elegant manner, theorists have long had misgivings about the physical interpretation of the phenomenon. Papers have been published that attempt to nail down its value, which is reportedly very small (∼10 pN) and evidently even the sign has been uncertain. Attempts to interpret it in a mechanical manner analogous to interfacial tension, i.e., due to the curvature of the three-phase contact line, have run into conceptual problems that require invocations of ever more complex models. In this work, we have used molecular simulations to systematically relate "line tension" to the additional free energy per unit length of the three-phase line and found no direct relation. However, when we rederived the Young's equation without ignoring the interfacial molecules, we found a physically satisfying explanation for the size dependence of the contact angle of nanodroplets invoking the curvature of the three-phase contact line. The new model does not have the elegant form of the modified Young's equation, but each parameter in it has an unambiguous physical interpretation. An approximate form of this model, linearized in the inverse droplet radius, yields a quantity that is mathematically analogous to what is conventionally called "line tension", but unpacked at the molecular level, showing that it is unrelated to a restoring force associated with the curvature of the macroscopic three-phase contact line.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c00179DOI Listing

Publication Analysis

Top Keywords

"line tension"
16
young's equation
12
three-phase contact
12
size dependence
8
dependence contact
8
physical interpretation
8
curvature three-phase
8
contact
5
molecular expression
4
"line
4

Similar Publications

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.

Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Toxic Effects of Butanol in the Plane of the Cell Membrane.

Langmuir

January 2025

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States.

Solvent toxicity limits -butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as -butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of -butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts.

View Article and Find Full Text PDF

are famous for their ability to survive in extremely harsh environments, probably due to the unprecedented stability of their lipid membranes. Key features of archaeal lipids (bolalipids) that confer their stability are methyl side groups and cyclopentanes in the alkyl chains, as well as the specific shape of the molecule, which has two headgroups connected by two tails. However, the contribution of each structural parameter to membrane stability and the underlying physical mechanism remain unknown.

View Article and Find Full Text PDF

Wetting Phenomena: Line Tension and Gravitational Effect.

Phys Rev Lett

December 2024

Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany.

An apparent contact angle is formed when a droplet is deposited on a solid substrate. Young's law has been employed to describe the equilibrium contact angle. Often in experiments, the equilibrium contact angle deviates from Young's law and depends on the volume of the droplet, known as the line tension effect.

View Article and Find Full Text PDF

Nanoparticle adhesion at liquid interfaces.

Soft Matter

January 2025

Department of Physics, Durham University, Durham, DH1 3LE, UK.

Nanoparticle adhesion at liquid interfaces plays an important role in drug delivery, dust removal, the adsorption of aerosols, and controlled self-assembly. However, quantitative measurements of capillary interactions at the nanoscale are challenging, with most existing results at the micrometre to millimetre scale. Here, we combine atomic force microscopy (AFM) and computational simulations to investigate the adhesion and removal of nanoparticles from liquid interfaces as a function of the particles' geometry and wettability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!