A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poly(2-Oxazoline) Amphiphilicity Tunes the Excited-State Proton Transfer of Pyrenol-Based Polyphotoacids. | LitMetric

AI Article Synopsis

  • Light-responsive polymers can be engineered for precise cargo release by utilizing light to alter their properties, leading to targeted applications.
  • The study focuses on photoacid polymers, where light-induced proton transfer changes their amphiphilic behavior, influenced by their local environment and molecular design.
  • By examining oxazoline-based amphiphilic polymers with pyrenol photoacid side chains, findings suggest that statistical arrangements enhance proton transfer more than block arrangements, highlighting the role of polymer structure in photophysical behavior.

Article Abstract

The ability of light to change the properties of light-responsive polymers opens avenues for targeted release of cargo with a high degree of spatial and temporal control. Recently, we established photoacid polymers as light-switchable macromolecular amphiphiles. In these systems, light-induced excited-state proton transfer (ESPT) causes changes in amphilicity. However, as the intermolecular process itself critically depends on the local environment of the photoacid unit within the polymer, the overall amphiphilicity directly influences ESPT. Thus, understanding the impact of the local environment on the photophysics of photoacidic side chains is key to material design. In this contribution we address both thermodynamic and kinetic aspects of ESPT in oxazoline-based amphiphilic polymers with pyrenol-based photoacid side chains. We will compare the effect of polymer design, i. e. statistical and block arrangements, i. e. in poly[(2-ethyl-2-oxazoline)-co-(1-(6/8-hydroxyperene)sulphonylaziridine)] and poly(2-ethyl-2-oxazoline)-block-poly[(2-ethyl-2-oxazoline)-co-(2-(3-(6-hydroxypyrene)sulphonamide)propyl-2-oxazoline), on the intermolecular proton transfer reaction by combining steady-state and time-resolved absorption and emission spectroscopy. ESPT appears more prominent in the statistical copolymer compared to a block copolymer with overall similar pyrenol loading. We hypothesize that the difference is due to different local chain arrangements adopted by the polymers in the two cases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202401047DOI Listing

Publication Analysis

Top Keywords

proton transfer
12
excited-state proton
8
local environment
8
side chains
8
poly2-oxazoline amphiphilicity
4
amphiphilicity tunes
4
tunes excited-state
4
transfer pyrenol-based
4
pyrenol-based polyphotoacids
4
polyphotoacids ability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!