A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural dynamics of robust legged robots. | LitMetric

Neural dynamics of robust legged robots.

Front Robot AI

Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States.

Published: April 2024

Legged robot control has improved in recent years with the rise of deep reinforcement learning, however, much of the underlying neural mechanisms remain difficult to interpret. Our aim is to leverage bio-inspired methods from computational neuroscience to better understand the neural activity of robust robot locomotion controllers. Similar to past work, we observe that terrain-based curriculum learning improves agent stability. We study the biomechanical responses and neural activity within our neural network controller by simultaneously pairing physical disturbances with targeted neural ablations. We identify an agile hip reflex that enables the robot to regain its balance and recover from lateral perturbations. Model gradients are employed to quantify the relative degree that various sensory feedback channels drive this reflexive behavior. We also find recurrent dynamics are implicated in robust behavior, and utilize sampling-based ablation methods to identify these key neurons. Our framework combines model-based and sampling-based methods for drawing causal relationships between neural network activity and robust embodied robot behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063321PMC
http://dx.doi.org/10.3389/frobt.2024.1324404DOI Listing

Publication Analysis

Top Keywords

neural activity
8
activity robust
8
neural network
8
neural
7
neural dynamics
4
robust
4
dynamics robust
4
robust legged
4
legged robots
4
robots legged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!