Given the increasingly large number of loci discovered by psychiatric GWAS, specification of the key biological pathways underlying these loci has become a priority for the field. We have previously leveraged the pleiotropic genetic relationships between schizophrenia and two cognitive phenotypes (educational attainment and cognitive task performance) to differentiate two subsets of illness-relevant SNPs: (1) those with "concordant" alleles, which are associated with reduced cognitive ability/education and increased schizophrenia risk; and (2) those with "discordant" alleles linked to reduced educational and/or cognitive levels but lower schizophrenia susceptibility. In the present study, we extend our prior work, utilizing larger input GWAS datasets and a more powerful statistical approach to pleiotropic meta-analysis, the Pleiotropic Locus Exploration and Interpretation using Optimal test (PLEIO). Our pleiotropic meta-analysis of schizophrenia and the two cognitive phenotypes revealed 768 significant loci (159 novel). Among these, 347 loci harbored concordant SNPs, 270 encompassed discordant SNPs, and 151 "dual" loci contained concordant and discordant SNPs. Competitive gene-set analysis using MAGMA related concordant SNP loci with neurodevelopmental pathways (e.g., neurogenesis), whereas discordant loci were associated with mature neuronal synaptic functions. These distinctions were also observed in BrainSpan analysis of temporal enrichment patterns across developmental periods, with concordant loci containing more prenatally expressed genes than discordant loci. Dual loci were enriched for genes related to mRNA translation initiation, representing a novel finding in the schizophrenia literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065000 | PMC |
http://dx.doi.org/10.1101/2024.04.16.24305885 | DOI Listing |
Mol Ecol
January 2025
Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA.
Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Agronomy, Horticulture, and Plant Science, South Dakota State University (SDSU), Brookings, SD, 57007, USA.
Background: Hexaploid oat (Avena sativa L.) is a commercially important cereal crop due to its soluble dietary fiber β-glucan, a hemicellulose known to prevent cardio-vascular diseases. To maximize health benefits associated with the consumption of oat-based food products, breeding efforts have aimed at increasing the β-glucan content in oat groats.
View Article and Find Full Text PDFBMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
Centre for Cardiovascular Sciences, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
Nat Genet
January 2025
Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!