Purpose: To develop a deep learning tool for the automatic segmentation of T2-weighted intramedullary lesions in spinal cord injury (SCI).
Material And Methods: This retrospective study included a cohort of SCI patients from three sites enrolled between July 2002 and February 2023. A deep learning model, SCIseg, was trained in a three-phase process involving active learning for the automatic segmentation of intramedullary SCI lesions and the spinal cord. The data consisted of T2-weighted MRI acquired using different scanner manufacturers with heterogeneous image resolutions (isotropic/anisotropic), orientations (axial/sagittal), lesion etiologies (traumatic/ischemic/hemorrhagic) and lesions spread across the cervical, thoracic and lumbar spine. The segmentations from the proposed model were visually and quantitatively compared with other open-source baselines. Wilcoxon signed-rank test was used to compare quantitative MRI biomarkers (lesion volume, lesion length, and maximal axial damage ratio) computed from manual lesion masks and those obtained automatically with SCIseg predictions.
Results: MRI data from 191 SCI patients (mean age, 48.1 years ± 17.9 [SD]; 142 males) were used for model training and evaluation. SCIseg achieved the best segmentation performance for both the cord and lesions. There was no statistically significant difference between lesion length and maximal axial damage ratio computed from manually annotated lesions and those obtained using SCIseg.
Conclusion: Automatic segmentation of intramedullary lesions commonly seen in SCI replaces the tedious manual annotation process and enables the extraction of relevant lesion morphometrics in large cohorts. The proposed model segments lesions across different etiologies, scanner manufacturers, and heterogeneous image resolutions. SCIseg is open-source and accessible through the Spinal Cord Toolbox.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065035 | PMC |
http://dx.doi.org/10.1101/2024.01.03.24300794 | DOI Listing |
Radiol Artif Intell
January 2025
From the Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15,81377 Munich, Germany (T.W., J.D., M.I.); Department of Statistics, LMU Munich, Munich, Germany (T.W., D.R.); and Munich Center for Machine Learning, Munich, Germany (T.W., J.D., D.R., M.I.).
Purpose To investigate whether the computational effort of 3D CT-based multiorgan segmentation with TotalSegmentator can be reduced via Tucker decomposition-based network compression. Materials and Methods In this retrospective study, Tucker decomposition was applied to the convolutional kernels of the TotalSegmentator model, an nnU-Net model trained on a comprehensive CT dataset for automatic segmentation of 117 anatomic structures. The proposed approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality.
View Article and Find Full Text PDFJ Thorac Imaging
September 2024
School of Computer Science and Engineering, The Hebrew University of Jerusalem.
Purpose: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for the automatic analysis of metastatic lung lesions and their temporal changes in pairs of chest CT scans.
Materials And Methods: SimU-Net is a simultaneous multichannel 3D U-Net model trained on pairs of registered prior and current scans of a patient.
Math Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.
Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia.
Artificial Intelligence (AI) based auto-segmentation has demonstrated numerous benefits to clinical radiotherapy workflows. However, the rapidly changing regulatory, research, and market environment presents challenges around selecting and evaluating the most suitable solution. To support the clinical adoption of AI auto-segmentation systems, Selection Criteria recommendations were developed to enable a holistic evaluation of vendors, considering not only raw performance but associated risks uniquely related to the clinical deployment of AI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!