Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Glioma (GBM) is the most prevalent malignancy worldwide with high morbidity and mortality. Exosome-mediated transfer of long noncoding RNA (lncRNA) has been reported to be associated with human cancers, containing GBM. Meanwhile, myeloid-derived suppressor cells (MDSCs) play a vital role in mediating the immunosuppressive environments in GBM.
Objectives: This study is designed to explore the role and mechanism of exosomal (Exo) lncRNA AGAP2-AS1 on the MDSC pathway in GBM.
Methods: AGAP2-AS1, microRNA-486-3p (miR-486-3p), and Transforming growth factor beta-1 (TGF-β1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, migration, and invasion were detected by 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and Transwell assays. E-cadherin, Vimentin, CD9, CD81, and TGF-β1 protein levels were examined using Western blot. Exosomes were detected by a transmission electron microscope (TEM). Binding between miR-486-3p and AGAP2-AS1 or TGF-β1 was predicted by LncBase or TargetScan and then verified using a dual-luciferase reporter assay.
Results: AGAP2-AS1 was highly expressed in GBM tissues and cells. Functionally, AGAP2-AS1 absence or TGF-β1 knockdown repressed tumor cell growth and metastasis. Furthermore, Exo-AGAP2-AS1 from GBM cells regulated TGF-β1 expression via sponging miR-486-3p in MDSCs. Exo-AGAP2-AS1 upregulation facilitated GBM cell growth and metastasis via the MDSC pathway.
Conclusion: Exo-AGAP2-AS1 boosted GBM cell development partly by regulating the MDSC pathway, hinting at a promising therapeutic target for GBM treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064146 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e29949 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!