A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D bioprinting: a review and potential applications for Mohs micrographic surgery. | LitMetric

3D bioprinting: a review and potential applications for Mohs micrographic surgery.

Arch Dermatol Res

Department of Dermatology and Cutaneous Surgery, University of Miami Leonard M. Miller School of Medicine, 455 NE 24th St. Apt 615, Miami, FL, 33137, USA.

Published: May 2024

Mohs Micrographic Surgery (MMS) is effective for treating common cutaneous malignancies, but complex repairs may often present challenges for reconstruction. This paper explores the potential of three-dimensional (3D) bioprinting in MMS, offering superior outcomes compared to traditional methods. 3D printing technologies show promise in advancing skin regeneration and refining surgical techniques in dermatologic surgery. A PubMed search was conducted using the following keywords: "Three-dimensional bioprinting" OR "3-D printing" AND "Mohs" OR "Mohs surgery" OR "Surgery." Peer-reviewed English articles discussing medical applications of 3D bioprinting were included, while non-peer-reviewed and non-English articles were excluded. Patients using 3D MMS models had lower anxiety scores (3.00 to 1.7, p < 0.0001) and higher knowledge assessment scores (5.59 or 93.25% correct responses), indicating better understanding of their procedure. Surgical residents using 3D models demonstrated improved proficiency in flap reconstructions (p = 0.002) and knowledge assessment (p = 0.001). Additionally, 3D printing offers personalized patient care through tailored surgical guides and anatomical models, reducing intraoperative time while enhancing surgical. Concurrently, efforts in tissue engineering and regenerative medicine are being explored as potential alternatives to address organ donor shortages, eliminating autografting needs. However, challenges like limited training and technological constraints persist. Integrating optical coherence tomography with 3D bioprinting may expedite grafting, but challenges remain in pre-printing grafts for complex cases. Regulatory and ethical considerations are paramount for patient safety, and further research is needed to understand long-term effects and cost-effectiveness. While promising, significant advancements are necessary for full utilization in MMS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00403-024-02893-6DOI Listing

Publication Analysis

Top Keywords

mohs micrographic
8
micrographic surgery
8
bioprinting review
4
review potential
4
potential applications
4
applications mohs
4
surgery mohs
4
surgery mms
4
mms effective
4
effective treating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!