Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (TiCT/Au). TiCT MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus TiCT/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the TiCT/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL to 1 µg mL. The unique structure and excellent electrochemical performance of TiCT/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-024-06369-2DOI Listing

Publication Analysis

Top Keywords

excellent electrochemical
8
electrochemical performance
8
performance tict/au
8
amp fb1
8
electrochemical
5
gold nanoparticles-doped
4
mxene
4
nanoparticles-doped mxene
4
mxene heterostructure
4
heterostructure ultrasensitive
4

Similar Publications

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

An MIL-53(FeNiCo) decorated BiVO photoanode for efficient photoelectrochemical water oxidation.

Dalton Trans

January 2025

Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.

BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.

View Article and Find Full Text PDF

Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.

View Article and Find Full Text PDF

The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!