In this work, we present fabricated magnetic tunnel junctions (MTJs) that can serve as magnetic memories (MMs) or vortex spin-torque nano-oscillators (STNOs) depending on the device geometry. We explore the heating effect on the devices to study how the performance of a neuromorphic computing system (NCS) consisting of MMs and STNOs can be enhanced by temperature. We further applied a neural network for waveform classification applications. The resistance of MMs represents the synaptic weights of the NCS, while temperature acts as an extra degree of freedom in changing the weights and TMR, as their anti-parallel resistance is temperature sensitive, and parallel resistance is temperature independent. Given the advantage of using heat for such a network, we envision using a vertical-cavity surface-emitting laser (VCSEL) to selectively heat MMs and/or STNO when needed. We found that when heating MMs only, STNO only, or both MMs and STNO, from 25 to 75 °C, the output power of the STNO increases by 24.7%, 72%, and 92.3%, respectively. Our study shows that temperature can be used to improve the output power of neural networks, and we intend to pave the way for future implementation of a low-area and high-speed VCSEL-assisted spintronic NCS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065860 | PMC |
http://dx.doi.org/10.1038/s41598-024-60929-3 | DOI Listing |
Sci Rep
October 2024
Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Croix du Sud 1, 1348, Louvain-la-Neuve, Belgium.
Micromagnetic simulations are used to study a spin-torque vortex oscillator excited by an out-of-plane dc current. The vortex core gyration amplitude is confined between two orbits due to periodical vortex core polarity reversals. The upper limit corresponds to the orbit where the vortex core reaches its critical velocity triggering the first polarity reversal which is immediately followed by a second one.
View Article and Find Full Text PDFNanotechnology
July 2024
School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China.
Spin torque nano-oscillators possessing fast nonlinear dynamics and short-term memory functions are potentially able to achieve energy-efficient neuromorphic computing. In this study, we introduce an activation-state controllable spin neuron unit composed of vertically coupled vortex spin torque oscillators and a-source circuit is proposed and used to build an energy-efficient sparse reservoir computing (RC) system to solve nonlinear dynamic system prediction task. Based on micromagnetic and electronic circuit simulation, the Mackey-Glass chaotic time series and the real motor vibration signal series can be predicted by the RC system with merely 20 and 100 spin neuron units, respectively.
View Article and Find Full Text PDFSci Rep
May 2024
Department of Electrical and Computer Engineering, Aarhus University, 8200, Aarhus, Denmark.
In this work, we present fabricated magnetic tunnel junctions (MTJs) that can serve as magnetic memories (MMs) or vortex spin-torque nano-oscillators (STNOs) depending on the device geometry. We explore the heating effect on the devices to study how the performance of a neuromorphic computing system (NCS) consisting of MMs and STNOs can be enhanced by temperature. We further applied a neural network for waveform classification applications.
View Article and Find Full Text PDFSci Rep
October 2023
Electrical and Computer Engineering Department, Aarhus University, 8200, Aarhus, Denmark.
In this paper, we investigate the granularity in the free layer of the magnetic tunnel junctions (MTJ) and its potential to function as a reservoir for reservoir computing where grains act as oscillatory neurons while the device is in the vortex state. The input of the reservoir is applied in the form of a magnetic field which can pin the vortex core into different grains of the device in the magnetic vortex state. The oscillation frequency and MTJ resistance vary across different grains in a non-linear fashion making them great candidates to be served as the reservoir's outputs for classification objectives.
View Article and Find Full Text PDFSci Rep
March 2023
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
In this study, we numerically investigate the spin transfer torque oscillation (STO) in a magnetic orthogonal configuration by introducing a strong biquadratic magnetic coupling. The orthogonal configuration consists of top and bottom layers with in-plane and perpendicular magnetic anisotropy sandwiching a nonmagnetic spacer. The advantage of an orthogonal configuration is the high efficiency of spin transfer torque leading a high STO frequency; however, maintaining the STO in a wide range of electric current is challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!