Dipsadidae is one of the largest clades of extant reptiles, showing an impressive morphological and ecological diversity. Despite this fact, the developmental processes behind its diversity are still largely unknown. In this study, we used 3D reconstructions based on micro-CT data and geometric morphometrics to evaluate the skull morphology of Philodryas agassizii, a small, surface-dwelling dipsadid that consume spiders. Adult individuals of P. agassizii exhibit a cranial morphology frequently observed in juveniles of other surface-dwelling colubroideans, represented in our analysis by its close relative Philodryas patagoniensis. Large orbits, gibbous neurocranial roof and a relatively short jaw complex are features present in juveniles of the latter species. Furthermore, we performed an extensive survey about diet of P. patagoniensis in which we detected an ontogenetic dietary shift, indicating that arthropods are more frequently consumed by juveniles of this dietary generalist. Thus, we infer that P. agassizzii retained not only the ancestral juvenile skull morphology but also dietary preferences. This study reveals that morphological changes driven by heterochronic changes, specifically paedomorphosis, influenced the retention of ancestral life history traits in P. agassizii, and therefore promoted cladogenesis. In this way, we obtained first evidence that heterochronic processes lead speciation in the snake megadiverse clade Dipsadidae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066030 | PMC |
http://dx.doi.org/10.1038/s41598-024-60885-y | DOI Listing |
New Phytol
January 2025
Department of Botany, Rhodes University, Makhanda, 6140, South Africa.
Pollinators are thought to play a key role in driving incipient speciation within the angiosperms. However, the mechanisms underlying floral divergence in plants with generalist pollination systems, remains understudied. Brunsvigia gregaria displays significant geographical variation in floral traits and are visited by diverse pollinator communities.
View Article and Find Full Text PDFYi Chuan
January 2025
Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Being the most magnificent plateau in elevation and size on Earth, the Qinghai-Tibet Plateau has a profound impact on biodiversity due to the unique geographic and climatic conditions. Here we review the speciation patterns and genetic diversity of the birds from the Qinghai-Tibet Plateau in relation to the geological history and climatic changes. First, the uplift of the Qinghai-Tibet Plateau forms a geographic barrier and promotes interspecific and intraspecific genetic differentiation.
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
The effects of single chromosome number change-dysploidy - mediating diversification remain poorly understood. Dysploidy modifies recombination rates, linkage, or reproductive isolation, especially for one-fifth of all eukaryote lineages with holocentric chromosomes. Dysploidy effects on diversification have not been estimated because modeling chromosome numbers linked to diversification with heterogeneity along phylogenies is quantitatively challenging.
View Article and Find Full Text PDFStud Mycol
December 2024
Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal.
The application of traditional morphological and ecological species concepts to closely related, asexual fungal taxa is challenging due to the lack of distinctive morphological characters and frequent cosmopolitan and plurivorous behaviour. As a result, multilocus sequence analysis (MLSA) has become a powerful and widely used tool to recognise and delimit independent evolutionary lineages (IEL) in fungi. However, MLSA can mask discordances in individual gene trees and lead to misinterpretation of speciation events.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Resources and Environment, Yangtze University, Wuhan, China. Electronic address:
Soil potentially toxic element (PTE) pollution, especially in karst regions, poses significant ecological risks due to the unique geological features and environmental conditions. This study focuses on the delayed geochemical hazard (DGH) model to assess the progressive risks of cadmium (Cd) and lead (Pb) contamination in the surface soils of karst regions in southwestern China. The study found that Pb and Cd pollution in karst areas presents ecological risks, with the region's high porosity and alkaline soils facilitating the transformation of pollutants from stable to mobile forms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!