Allergic airway inflammation (AAI), including allergic rhinitis (AR) and allergic asthma, is driven by epithelial barrier dysfunction and type 2 inflammation. However, the underlying mechanism remains uncertain and available treatments are constrained. Consequently, we aim to explore the role of cell-free DNA (cfDNA) in AAI and assess the potential alleviating effects of cationic polymers (CPs) through cfDNA elimination. Levels of cfDNA were evaluated in AR patients, allergen-stimulated human bronchial epithelium (BEAS-2B cells) and primary human nasal epithelium from both AR and healthy control (HC), and AAI murine model. Polyamidoamine dendrimers-generation 3 (PAMAM-G3), a classic type of cationic polymers, were applied to investigate whether the clearance of cfDNA could ameliorate airway epithelial dysfunction and inhibit AAI. The levels of cfDNA in the plasma and nasal secretion from AR were higher than those from HC (P < 0.05). Additionally, cfDNA levels in the exhaled breath condensate (EBC) were positively correlated with Interleukin (IL)-5 levels in EBC (R = 0.4191, P = 0.0001). Plasma cfDNA levels negatively correlated with the duration of allergen immunotherapy treatment (R = -0.4297, P = 0.006). Allergen stimulated cfDNA secretion in vitro (P < 0.001) and in vivo (P < 0.0001), which could be effectively scavenged with PAMAM-G3. The application of PAMAM-G3 inhibited epithelial barrier dysfunction in vitro and attenuated the development of AAI in vivo. This study elucidates that cfDNA, a promising biomarker for monitoring disease severity, aggravates AAI and the application of intranasal PAMAM-G3 could potentially be a novel therapeutic intervention for AAI. Allergen stimulates the secretion of cell-free DNA (cfDNA) in both human and mouse airway. Intranasal polyamidoamine dendrimers-generation 3 (PAMAM-G3) scavenges cfDNA and alleviates allergic airway inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065999 | PMC |
http://dx.doi.org/10.1038/s41420-024-01980-x | DOI Listing |
Sci Immunol
January 2025
Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.
View Article and Find Full Text PDFTargeted therapy has emerged as a promising option in cancer treatment, driven by advances in the understanding of DNA changes and the molecular basis of cancer. This article provides an overview of next-generation sequencing and types of genetic alterations, common cancer biomarkers, a review of circulating tumor DNA testing and its applications for oncology treatments, how to read a genomic testing report, examples of targeted therapy for cancer pathologic variants and tumor markers, and the implications for nursing practice in this emerging field.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, İstanbul University-Cerrahpasa, Avcilar, İstanbul, Turkey.
Ram sperm are more vulnerable to freezing than those of most other farm animals. During sperm freezing, the cell membrane loses some of its cholesterol, which regulates signalling mechanisms and prevents premature capacitation. Resveratrol (RES) increases the fluidity of the cell membrane, which becomes peroxidized during freezing and reduces free radicals.
View Article and Find Full Text PDFInvest New Drugs
January 2025
Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan.
The impact of clinical stage on the effectiveness of osimertinib for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) remains unexamined. We investigated osimertinib therapeutic efficacy variation between stage IVA or lower and stage IVB EGFR mutation-positive lung cancers, focusing on differences in pretreatment co-occurring genetic alterations in circulating tumor DNA. This was a secondary analysis of the ELUCIDATOR study, a multicenter prospective observational study in Japan that assessed the mechanisms underlying resistance to osimertinib as a first-line treatment for advanced NSCLC with EGFR mutations.
View Article and Find Full Text PDFJCO Glob Oncol
January 2025
University of Oxford, Oxford, United Kingdom.
Purpose: Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) affects children in sub-Saharan Africa, but diagnosis via tissue biopsy is challenging. We explored a liquid biopsy approach using targeted next-generation sequencing to detect the -immunoglobulin (-Ig) translocation and EBV DNA, assessing its potential for minimally invasive BL diagnosis.
Materials And Methods: The panel included targets for the characteristic -Ig translocation, mutations in intron 1 of , mutations in exon 2 of , and three EBV genes: EBV-encoded RNA (EBER)1, EBER2, and EBV nuclear antigen 2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!