A novel reporter for helicase activity in translation uncovers DDX3X interactions.

RNA

Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California 94143, USA

Published: July 2024

DDX3X regulates the translation of a subset of human transcripts containing complex 5' untranslated regions (5' UTRs). In this study, we developed the helicase activity reporter for translation (HART), which uses DDX3X-sensitive 5' UTRs to measure DDX3X-mediated translational activity in cells. To directly measure RNA structure in DDX3X-dependent mRNAs, we used SHAPE-MaP to determine the secondary structures present in DDX3X-sensitive 5' UTRs and then used HART to investigate how sequence alterations influence DDX3X sensitivity. Additionally, we identified residues 38-44 as potential mediators of DDX3X's interaction with the translational machinery. HART revealed that both DDX3X's association with the translational machinery and its helicase activity are required for its function in promoting the translation of DDX3X-sensitive 5' UTRs. These findings suggest DDX3X plays a crucial role in regulating translation through its interaction with the translational machinery during ribosome scanning and establish the HART reporter as a robust, lentivirally encoded, colorimetric measurement of DDX3X-dependent translation in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251518PMC
http://dx.doi.org/10.1261/rna.079837.123DOI Listing

Publication Analysis

Top Keywords

helicase activity
12
ddx3x-sensitive utrs
12
translational machinery
12
interaction translational
8
translation
6
novel reporter
4
reporter helicase
4
activity
4
activity translation
4
translation uncovers
4

Similar Publications

Metallo-supramolecular complexes enantioselectively target monkeypox virus RNA G-quadruplex and bolster immune responses against MPXV.

Natl Sci Rev

January 2025

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

The Mpox virus (MPXV) has emerged as a formidable orthopoxvirus, posing an immense challenge to global public health. An understanding of the regulatory mechanisms of MPXV infection, replication and immune evasion will benefit the development of novel antiviral strategies. Despite the involvement of G-quadruplexes (G4s) in modulating the infection and replication processes of multiple viruses, their roles in the MPXV life cycle remain largely unknown.

View Article and Find Full Text PDF

Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity.

View Article and Find Full Text PDF
Article Synopsis
  • The TRAMP complex is crucial for RNA processing and features two key enzymatic activities that involve both polyadenylation and unwinding of RNA.
  • New research using hydrogen-deuterium exchange data reveals insights into how TRAMP assembles and shuffles RNA between its catalytic sites, which are not fully understood.
  • Findings indicate that peripheral RNA-recognition motifs affect TRAMP assembly and that different active-site subunits interact with tRNA in ways that influence RNA transfer between TRAMP components.
View Article and Find Full Text PDF

ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.

View Article and Find Full Text PDF

DNA helicases play a pivotal role in maintaining genome integrity by unwinding the DNA double helix and are often considered promising targets for drug development. However, assessing specific DNA helicase activity in living cells remains challenging. Herein, the first anchor-embedded duplex (ATED) probe, 17GC, is constructed to uniquely monitor the unwinding activity of Werner syndrome helicase (WRN), a clinical anticancer target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!