The ocular system is in constant interaction with the environment and with numerous pathogens. The ATP-binding cassette (ABC) transporters represent one of the largest groups among the transmembrane proteins. Their relevance has been demonstrated for their defense function against biotic and abiotic stress factors, for metabolic processes in tumors and for their importance in the development of resistance to drugs. The aim of this study was to analyze which ABC transporters are expressed at the ocular surface and in the human lacrimal apparatus. Using RT-PCR, all ABC transporters known to date in humans were examined in tissue samples from human cornea, conjunctiva, meibomian glands and lacrimal glands. The RT-PCR analyses revealed the presence of all ABC transporters in the samples examined, although the results for some of the 48 transporters known in human and analyzed were different in the various tissues. The present results provide information on the expression of ABC transporters at the mRNA level on the ocular surface and in the lacrimal system. Their detection forms the basis for follow-up studies at the protein level, which will provide more information about their physiological significance at the ocular surface and in the lacrimal system and which may explain pathological effects such as drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2024.152272DOI Listing

Publication Analysis

Top Keywords

abc transporters
20
ocular surface
16
lacrimal apparatus
8
surface lacrimal
8
lacrimal system
8
abc
6
transporters
6
lacrimal
5
ocular
5
molecular detection
4

Similar Publications

Allergic asthma is a significant international concern in respiratory health, which can be exacerbated by the increasing levels of non-allergenic pollutants. This rise in airborne pollutants is a primary driver behind the growing prevalence of asthma, posing a health emergency. Additionally, climatic risk factors can contribute to the onset and progression of asthma.

View Article and Find Full Text PDF

The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells.

Cell Chem Biol

December 2024

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.

View Article and Find Full Text PDF

Major histocompatibility complex class I deficiency results from deleterious biallelic variants in TAP1, TAP2, TAPBP, and B2M genes. Only a few patients with variant-curated TAP1 deficiency (TAP1D) have been reported in the literature and the clinical phenotype has been variable with an emphasis on autoimmune and inflammatory complications. We report TAP1D in a Nepalese girl with a severe clinical phenotype with serious viral infections at a very young age.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!