Oncogenic functions and therapeutic potentials of targeted inhibition of SMARCAL1 in small cell lung cancer.

Cancer Lett

State Key Laboratory of Molecular Oncology and Department of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. Electronic address:

Published: June 2024

Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by high frequency loss-of-function mutations in tumor suppressors with a lack of targeted therapy due to absence of high frequency gain-of-function abnormalities in oncogenes. SMARCAL1 is a member of the ATP-dependent chromatin remodeling protein SNF2 family that plays critical roles in DNA damage repair and genome stability maintenance. Here, we showed that SMARCAL1 was overexpressed in SCLC patient samples and was inversely associated with overall survival of the patients. SMARCAL1 was required for SCLC cell proliferation and genome integrity. Mass spectrometry revealed that PAR6B was a downstream SMARCAL1 signal molecule which rescued inhibitory effects caused by silencing of SMARCAL1. By screening of 36 FDA-approved clinically available agents related to DNA damage repair, we found that an aza-anthracenedione, pixantrone, was a potent SMARCAL1 inhibitor which suppressed the expression of SMARCAL1 and PAR6B at protein level. Pixantrone caused DNA damage and exhibited inhibitory effects on SCLC cells in vitro and in a patient-derived xenograft mouse model. These results indicated that SMARCAL1 functions as an oncogene in SCLC, and pixantrone as a SMARCAL1 inhibitor bears therapeutic potentials in this deadly disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2024.216929DOI Listing

Publication Analysis

Top Keywords

dna damage
12
smarcal1
10
therapeutic potentials
8
small cell
8
cell lung
8
lung cancer
8
high frequency
8
damage repair
8
inhibitory effects
8
smarcal1 inhibitor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!