Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed K values of 30 μM for MAL12 (GPESB16) and 37 μM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132036 | DOI Listing |
J Biol Chem
December 2024
Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
2-O-α-Glucosylglycerol (GG) is a natural heteroside synthesized by many cyanobacteria and a few heterotrophic bacteria under salt stress conditions. Bacteria produce GG in response to stimuli and degrade it once the stimulus diminishes. Heterotrophic bacteria utilize GG phosphorylase (GGP), a member of the GH13_18 family, via a two-step process consisting of phosphorolysis and hydrolysis for GG catabolism.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea. Electronic address:
BMC Microbiol
November 2024
Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China.
Enterobacter ludwigii has been proven by numerous studies to be an effective plant growth promoter. Enterobacter ludwigii T977 was isolated from leaves of Nicotiana tabacum L. Yunyan 97 which showing high starch degrading ability.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Bioproduct Engineering, Engineering and Technology institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Chemical Engineering Department, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, the Netherlands. Electronic address:
Glycogen branching enzymes (GBEs; EC 2.4.1.
View Article and Find Full Text PDFMicrobiome
November 2024
College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
Background: Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!