Kinetics and molecular modeling studies on the inhibition mechanism of GH13 α-glycosidases by small molecule ligands.

Int J Biol Macromol

Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. Electronic address:

Published: June 2024

AI Article Synopsis

Article Abstract

Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed K values of 30 μM for MAL12 (GPESB16) and 37 μM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132036DOI Listing

Publication Analysis

Top Keywords

gh13 α-glycosidases
12
ppa gpesb15
8
active site
8
kinetics molecular
4
molecular modeling
4
modeling studies
4
studies inhibition
4
inhibition mechanism
4
gh13
4
mechanism gh13
4

Similar Publications

Structural Basis of the Bifunctionality of Marinobacter salinexigens ZYF650 Glucosylglycerol Phosphorylase in Glucosylglycerol Catabolism.

J Biol Chem

December 2024

Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.

2-O-α-Glucosylglycerol (GG) is a natural heteroside synthesized by many cyanobacteria and a few heterotrophic bacteria under salt stress conditions. Bacteria produce GG in response to stimuli and degrade it once the stimulus diminishes. Heterotrophic bacteria utilize GG phosphorylase (GGP), a member of the GH13_18 family, via a two-step process consisting of phosphorolysis and hydrolysis for GG catabolism.

View Article and Find Full Text PDF

Construction and enzymatic characterization of a monomeric variant of dimeric amylosucrase from Deinococcus geothermalis.

Int J Biol Macromol

January 2025

Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea. Electronic address:

Article Synopsis
  • Amylosucrase (ASase) from Deinococcus geothermalis (DgAS) is characterized as a dimeric enzyme that produces α-1,4-glucans using sucrose, and this study reveals key amino acids important for maintaining its dimeric structure.
  • The mutated monomeric form (DgAS R30A) shows a stronger affinity for sucrose and preferentially produces shorter α-glucans with a degree of polymerization (DP) of ≤20.
  • The research also uncovers the first high-resolution structure of dimeric DgAS, providing insights into enzyme activity and the significance of dimerization for its functional properties.
View Article and Find Full Text PDF

Enterobacter ludwigii has been proven by numerous studies to be an effective plant growth promoter. Enterobacter ludwigii T977 was isolated from leaves of Nicotiana tabacum L. Yunyan 97 which showing high starch degrading ability.

View Article and Find Full Text PDF

A distinctive function of GH13_8 subfamily glycogen branching enzyme in Anaerococcus prevotii DSM 20548: Preference to create very short branches.

Int J Biol Macromol

December 2024

Bioproduct Engineering, Engineering and Technology institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Chemical Engineering Department, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 3, 9747 AG Groningen, the Netherlands. Electronic address:

Glycogen branching enzymes (GBEs; EC 2.4.1.

View Article and Find Full Text PDF

Background: Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!