The nonrandom distribution of chromosomal characteristics and functional elements-genomic architecture-impacts the relative strengths and impacts of population genetic processes across the genome. Due to this relationship, genomic architecture has the potential to shape variation in population genetic structure across the genome. Population genetic structure has been shown to vary across the genome in a variety of taxa, but this body of work has largely focused on pairwise population genomic comparisons between closely related taxa. Here, we used whole genome sequencing of seven phylogeographically structured populations of a North American songbird, the Brown Creeper (Certhia americana), to determine the impacts of genomic architecture on phylogeographic structure variation across the genome. Using multiple methods to infer phylogeographic structure-ordination, clustering, and phylogenetic methods-we found that recombination rate variation explained a large proportion of phylogeographic structure variation. Genomic regions with low recombination showed phylogeographic structure consistent with the genome-wide pattern. In regions with high recombination, we found strong phylogeographic structure, but with discordant patterns relative to the genome-wide pattern. In regions with high recombination rate, we found that populations with small effective population sizes evolve relatively more rapidly than larger populations, leading to discordant signatures of phylogeographic structure. These results suggest that the interplay between recombination rate variation and effective population sizes shape the relative impacts of selection and genetic drift in different parts of the genome. Overall, the combined interactions of population genetic processes, genomic architecture, and effective population sizes shape patterns of variability in phylogeographic structure across the genome of the Brown Creeper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2024.108088 | DOI Listing |
Genes (Basel)
December 2024
Dipartimento di Scienze Linguistiche e Letterature Straniere, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123 Milan, Italy.
Eastern Finnic populations, including Karelians, Veps, Votes, Ingrians, and Ingrian Finns, are a significant component of the history of Finnic populations, which have developed over ~3 kya. Yet, these groups remain understudied from a genetic point of view. In this work, we explore the gene pools of Karelians (Northern, Tver, Ludic, and Livvi), Veps, Ingrians, Votes, and Ingrian Finns using Y-chromosome markers (N = 357) and genome-wide autosomes (N = 67) and in comparison with selected Russians populations of the area (N = 763).
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
Background: The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany; Department of Biology, Muni University, Arua, Uganda; Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany; Department of Biological Sciences, Macquarie University, Sydney, Australia. Electronic address:
Malaria parasites of the genus Polychromophilus commonly infect vespertilionid and miniopterid bats, and are transmitted by bat flies (Nycteribiidae). While Polychromophilus murinus has been recorded sporadically in Europe, its host range, distribution and phylogeographic structure have not been explored. Here we investigate the prevalence and genetic diversity of P.
View Article and Find Full Text PDFEcol Evol
December 2024
Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.
The genus is widely distributed, primarily in East Asia. is located at the northern limit of this genus distribution, and understanding changes in its distribution is crucial for understanding the evolution of plants in this region, as well as their relationship with geological history and climate change. Moreover, the classification of sect.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
Studying the evolutionary history of plants in the Qinghai-Tibetan Plateau region provides a theoretical basis for the conservation and use of plant genetic resources. In this study, we analyzed five chloroplast gene fragments to examine the genetic diversity and phylogeography of Prunus mira in 577 individuals from 32 populations. The results indicated that P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!