Activation of peroxymonosulfate by Fe,N co-doped walnut shell biochar for the degradation of sulfamethoxazole: Performance and mechanisms.

Environ Pollut

KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayarita 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom. Electronic address:

Published: August 2024

AI Article Synopsis

  • Fe and N co-doped walnut shell biochar (Fe,N-BC) was created using a one-pot pyrolysis method, incorporating walnut shells, melamine for nitrogen, and iron(III) chloride for iron, alongside control materials like pristine biochar and nitrogen-doped biochar.
  • The Fe,N-BC demonstrated an impressive degradation rate of sulfamethoxazole (SMX) when activated with peroxymonosulfate (PMS), outperforming other tested biochar types and mainly due to the reactive formation of iron compounds.
  • Additionally, Fe,N-BC was utilized to create a high-performing ultrafiltration membrane, achieving excellent separation of humic acid sodium salt and enhanced self-cleaning properties when filtering

Article Abstract

Fe and N co-doped walnut shell biochar (Fe,N-BC) was prepared through a one-pot pyrolysis procedure by using walnut shells as feedstocks, melamine as the N source, and iron (III) chloride as the Fe source. Moreover, pristine biochar (BC), nitrogen-doped biochar (N-BC), and α-FeO-BC were synthesized as controls. All the prepared materials were characterized by different techniques and were used for the activation of peroxymonosulfate (PMS) for the degradation of sulfamethoxazole (SMX). A very high degradation rate for SMX (10 mg/L) was achieved with Fe,N-BC/PMS (0.5 min), which was higher than those for BC/PMS (0.026 min), N-BC/PMS (0.038 min), and α-FeO-BC/PMS (0.33 min) under the same conditions. This is mainly due to the formation of FeC and iron oxides, which are very reactive for the activation of PMS. In the next step, Fe,N-BC was employed for the formation of a composite membrane structure by a liquid-induced phase inversion process. The synthesized ultrafiltration membrane not only exhibited high separation performance for humic acid sodium salt (HA, 98%) but also exhibited improved self-cleaning properties when applied for rhodamine B (RhB) filtration combined with a PMS solution cleaning procedure. Scavenging experiments revealed that O was the predominant species responsible for the degradation of SMX. The transformation products of SMX and possible degradation pathways were also identified. Furthermore, the toxicity assessment revealed that the overall toxicity of the intermediate was lower than that of SMX.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124018DOI Listing

Publication Analysis

Top Keywords

activation peroxymonosulfate
8
co-doped walnut
8
walnut shell
8
shell biochar
8
degradation sulfamethoxazole
8
degradation
5
smx
5
peroxymonosulfate fen
4
fen co-doped
4
biochar
4

Similar Publications

ZnO-CoO material was successfully synthesized by the co-precipitation method and used as a catalyst for the removal of diclofenac sodium (DCF). ZnO-CoO exhibited higher catalytic activity in the catalytic process compared to the photocatalytic processes. Under optimum conditions, the activation of peroxymonosulfate (PMS) by ZnO-CoO achieved approximately 99% removal of DCF, confirming the effective adsorption and activation of PMS.

View Article and Find Full Text PDF

High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.

View Article and Find Full Text PDF

Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in Fenton-like reactions.

Nat Commun

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Single-atom catalysts (SACs) have been increasingly acknowledged for their performance in sustainable Fenton-like catalysis. However, SACs face a trade-off between activity and stability in peroxymonosulfate (PMS)-based systems. Herein, we design a nano-island encapsulated single cobalt atom (Co-ZnO) catalyst to enhance the activity and stability of PMS activation for contaminant degradation via an "island-sea" synergistic effect.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for creating a CuO/FeO composite with a heterostructure, which enhances charge transfer due to an internal electric field at the interface.
  • This internal electric field induces distinct electron-rich and electron-deficient zones, triggering effective reactions with peroxymonosulfate (PMS) that lead to the production of reactive oxygen species.
  • The CuO/FeO composite system shows strong potential for wastewater treatment by efficiently mineralizing organic pollutants into non-toxic by-products, offering new insights for future research in this field.
View Article and Find Full Text PDF

The technology to solve the problem of the efficient pollutant removal in peroxymonosulfate (PMS) activation was the ultimate goal. There was an urgent need to achieving higher catalytic activity and oxidation efficiency. Herein, we present a MgAl-based layered double hydroxide assembled as a 2D confined catalyst (MgAl-Co-LDH) with Co metal in chelated form (Co-EDTA) for highly efficient PMS activation degrading sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!