Objectives: The emergence of carbapenem-resistant Pseudomonas putida (CRPP) has raised public awareness. This study investigated two strains from the Pseudomonas putida group that were resistant to carbapenem, tigecycline, and aztreonam-avibactam (ATM-AVI), with a focus on their microbial and genomic characteristics.
Methods: We assessed the antibiotic resistance profile using broth dilution, disk diffusion, and E-test methods. Efflux pump phenotype testing and real-time quantitative PCR were employed to evaluate efflux pump activity in tigecycline resistance, while polymerase chain reaction was utilized to detect common carbapenem genes. Additionally, whole-genome sequencing was performed to analyze genomic characteristics. The transferability of bla and bla was assessed through a conjugation experiment. Furthermore, growth kinetics and biofilm formation were examined using growth curves and crystal violet staining.
Results: Both strains demonstrated resistance to carbapenem, tigecycline, and ATM-AVI. Notably, NMP can restore sensitivity to tigecycline. Subsequent analysis revealed that they co-produced bla, bla, tmexCD-toprJ, and bla, belonging to a novel sequence type ST268. Although they were closely related on the phylogenetic tree, they exhibited different levels of virulence. Genetic environment analysis indicated variations compared to prior studies, particularly regarding the bla and bla genes, which showed limited horizontal transferability. Moreover, it was observed that temperature exerted a specific influence on their biological factors.
Conclusion: We initially identified two P. putida ST268 strains co-producing bla, bla, bla, and tmexCD-toprJ. The resistance to tigecycline and ATM-AVI can be attributed to the presence of multiple drug resistance determinants. These findings underscore the significance of P. putida as a reservoir for novel antibiotic resistance genes. Therefore, it is imperative to develop alternative antibiotic therapies and establish effective monitoring of bacterial resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.106668 | DOI Listing |
Environ Int
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom. Electronic address:
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria.
View Article and Find Full Text PDFPathogens
January 2025
MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. and genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation.
View Article and Find Full Text PDFMicroorganisms
January 2025
Laboratório de Epidemiologia e Microbiologia Moleculares-LEMiMo, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil.
KPC is a clinically significant serine carbapenemase in most countries, and its rapid spread threatens global public health. transmission is commonly mediated by Tn transposons. The gene has also been found in (NTE).
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania.
Antibiotic resistance is on the WHO's top 10 list of global public health threats due to its rapid emergence and spread but also because of the high morbidity and mortality associated with it. Amongst the main species driving this phenomenon is , a member of the ESKAPE group of medical assistance-associated infections causing species famous for its extensively drug-resistant phenotypes. Our findings note a 91.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.
This study examines the prevalence and the mechanisms of antibiotic resistance in isolates collected from healthcare units in Northwestern Transylvania, Romania, between 2022 and 2023. Given the alarming rise in antibiotic resistance, the study screened 34 isolates for resistance to 10 antibiotics, 46 ARGs, and integrase genes using PCR analysis. The results reveal a concerning increase in multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates over the two-year period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!