Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrical impedance tomography (EIT) produces clinical useful visualization of the distribution of ventilation inside the lungs. The accuracy of EIT-derived parameters can be compromised by the cardiovascular signal. Removal of these artefacts is challenging due to spectral overlapping of the ventilatory and cardiovascular signal components and their time-varying frequencies. We designed and evaluated advanced filtering techniques and hypothesized that these would outperform traditional low-pass filters.Three filter techniques were developed and compared against traditional low-pass filtering: multiple digital notch filtering (MDN), empirical mode decomposition (EMD) and the maximal overlap discrete wavelet transform (MODWT). The performance of the filtering techniques was evaluated (1) in the time domain (2) in the frequency domain (3) by visual inspection. We evaluated the performance using simulated contaminated EIT data and data from 15 adult and neonatal intensive care unit patients.Each filter technique exhibited varying degrees of effectiveness and limitations. Quality measures in the time domain showed the best performance for MDN filtering. The signal to noise ratio was best for DLP, but at the cost of a high relative and removal error. MDN outbalanced the performance resulting in a good SNR with a low relative and removal error. MDN, EMD and MODWT performed similar in the frequency domain and were successful in removing the high frequency components of the data.Advanced filtering techniques have benefits compared to traditional filters but are not always better. MDN filtering outperformed EMD and MODWT regarding quality measures in the time domain. This study emphasizes the need for careful consideration when choosing a filtering approach, depending on the dataset and the clinical/research question.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6579/ad46e3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!