AI Article Synopsis

  • * Two female patients with both MG and LEMS saw little improvement from various immunotherapy options but experienced rapid recovery after receiving anti-CD19 CAR T cell therapy.
  • * Following the treatment, both patients regained full mobility and returned to normal activities within two months, showcasing the potential of anti-CD19 CAR T cells in effectively treating complex neuroimmunological diseases.

Article Abstract

Myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) are autoimmune disorders affecting neuromuscular transmission. Their combined occurrence is rare, and treatment remains challenging. Two women diagnosed with concomitant MG/LEMS experienced severe, increasing disease activity despite multiple immunotherapies. Anti-CD19 chimeric antigen receptor (CAR) T cells have shown promise for treating autoimmune diseases. This report details the safe application of anti-CD19 CAR T cells for treating concomitant MG/LEMS. After CAR T cell therapy, both patients experienced rapid clinical recovery and regained full mobility. Deep B cell depletion and normalization of acetylcholine receptor and voltage-gated calcium channel N-type autoantibody levels paralleled major neurological responses. Within 2 months, both patients returned to everyday life, from wheelchair dependency to bicycling and mountain hiking, and remain stable at 6 and 4 months post-CAR T cell infusion, respectively. This report highlights the potential for anti-CD19 CAR T cells to achieve profound clinical effects in the treatment of neuroimmunological diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2024.04.014DOI Listing

Publication Analysis

Top Keywords

car t cells
16
myasthenia gravis
8
gravis lambert-eaton
8
lambert-eaton myasthenic
8
myasthenic syndrome
8
concomitant mg/lems
8
anti-cd19 car
8
car
5
treatment concomitant
4
concomitant myasthenia
4

Similar Publications

Messenger ribonucleic acid (mRNA) therapeutics are attracting attention as promising tools in cancer immunotherapy due to their ability to leverage the in vivo expression of all known protein sequences. Even small amounts of mRNA can have a powerful effect on cancer vaccines by promoting the synthesis of tumor-specific antigens (TSA) or tumor-associated antigens (TAA) by antigen-presenting cells (APC). These antigens are then presented to T cells, eliciting strong antitumor immune stimulation.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination.

View Article and Find Full Text PDF
Article Synopsis
  • CAR T-cell therapies have been effective for blood cancers but face challenges in treating solid tumors; CAR-macrophages (CAR-M) are being explored as an alternative therapy.*
  • CAR-M can be activated and target tumors using tumor-associated antigens, but the mechanisms of their movement and infiltration in tumors are not fully understood.*
  • This study uses a 3D tumor spheroid model created from self-assembling nucleic acid nanostructures to evaluate CAR-M's effectiveness, showing better invasion and tumor-killing abilities compared to traditional 2D models.*
View Article and Find Full Text PDF
Article Synopsis
  • - Pancreatic cancer is a tough-to-treat disease with only a 13% survival rate over five years, and current immunotherapies like CAR T cells aren't very effective for it.
  • - Researchers identified Muc16CD as a new target (tumor-associated antigen) that CAR T cells can attack, which is present in pancreatic tumors.
  • - Muc16CD-targeted CAR T cells show promise in laboratory models, effectively recognizing pancreatic tumor cells and improving tumor control and survival rates.
View Article and Find Full Text PDF

Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!