The 14th African Society of Human Genetics (AfSHG) Morocco Meeting and 2nd International Congress of the Moroccan Society of Genomics and Human Genetics (SM2GH), held in Rabat, Morocco, from December 12 through 17, 2022, brought together 298 attendees from 23 countries, organized by the AfSHG in collaboration with the SM2GH. The conference's overarching theme was "Applications of Genomics Medicine in Africa," covering a wide range of topics, including population genetics, genetics of infectious diseases, hereditary disorders, cancer genetics, and translational genetics. The conference aimed to address the lag in the field of genetics in Africa and highlight the potential for genetic research and personalized medicine on the continent. The goal was to improve the health of African populations and global communities while nurturing the careers of young African scientists in the field. Distinguished scientists from around the world shared their recent findings in genetics, immunogenetics, genomics, genome editing, immunotherapy, and ethics genomics. Precongress activities included a 2-day bioinformatics workshop, "NGS Analysis for Monogenic Disease in African Populations," and a Young Investigators Forum, providing opportunities for young African researchers to showcase their work. The vast genetic diversity of the African continent poses a significant challenge in investigating and characterizing public health issues at the genetic and functional levels. Training, research, and the development of expertise in genetics, immunology, genomics, and bioinformatics are vital for addressing these challenges and advancing genetics in Africa. The AfSHG is committed to leading efforts to enhance genetic research, coordinate training, and foster research collaborations on the continent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154058PMC
http://dx.doi.org/10.4269/ajtmh.23-0808DOI Listing

Publication Analysis

Top Keywords

human genetics
16
genetics
12
african society
8
society human
8
2nd international
8
international congress
8
congress moroccan
8
moroccan society
8
society genomics
8
genomics human
8

Similar Publications

Importance: CHEK2 pathogenic and likely pathogenic variants (PVs) are common, and low-risk (LR) variants, p.I157T, p.S428F, and p.

View Article and Find Full Text PDF

GEMLI: Gene Expression Memory-Based Lineage Inference from Single-Cell RNA-Sequencing Datasets.

Methods Mol Biol

January 2025

Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.

Gene expression memory-based lineage inference (GEMLI) is a computational tool allowing to predict cell lineages solely from single-cell RNA-sequencing (scRNA-seq) datasets and is publicly available as an R package on GitHub. GEMLI is based on the occurrence of gene expression memory, i.e.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Lineage Recording in Human Brain Organoids with iTracer.

Methods Mol Biol

January 2025

Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.

Induced pluripotent stem cell (iPSC)-derived organoids provide models to study human organ development. Single-cell transcriptomics enables highly resolved descriptions of cell states within these systems; however, approaches are needed to directly determine the lineage relationship between cells. Here we provide a detailed protocol (Fig.

View Article and Find Full Text PDF

Tracking Somatic Mutations for Lineage Reconstruction.

Methods Mol Biol

January 2025

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

The human genome is composed of distinct genomic regions that are susceptible to various types of somatic mutations. Among these, Short Tandem Repeats (STRs) stand out as the most mutable genetic elements. STRs are short repetitive polymorphic sequences, predominantly situated within noncoding sectors of the genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!