In this letter, we propose a miniaturization scheme of inkjet printed ionic sensing electrodes by adding graphene into the ion-selective PVC film not only to reduce the impedance of the ionic liquid layer of the electrode but also to increase the electrode capacitance for the reduction of the response time. Based on the scheme, we present a fully inkjet-printed electrochemical ion-selective sensor comprising a working electrode and reference electrode, which are inkjet-printed Ag NPs/PEDOT:PSS-graphene/PVC-graphene and Ag/AgCl/ionic liquid PVC-graphene layer structures, respectively. The printed ion-selective working electrode has been miniaturized to a size of 22,400 μm equivalent to a square shape of ∼150 × 150 μm comparable to the size of a human cell. By adding graphene to the ion selective PVC film, more than 90 % charge transfer resistance reduction can be achieved and the shunt capacitance is increased by 3.4-fold in shunt capacitance compared to the film without graphene, thereby more than 33 % reduction of the response time required to reach equilibrium. Meanwhile, these miniaturized potassium sensors using the working electrodes with/without adding graphene have been integrated with in-lab signal-processing and wireless-transmission module to yield similar results to the one measured by commercial electrochemical workstation showing a great potential for real-time monitoring in portable clinical trials. Specifically, the proposed sensor utilizing graphene-enhanced electrodes demonstrates a linearity uncertainty of 2.9 mV, which is approximately half of the uncertainty observed in the sensors lacking graphene integration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126107DOI Listing

Publication Analysis

Top Keywords

adding graphene
12
sensing electrodes
8
real-time monitoring
8
pvc film
8
reduction response
8
response time
8
working electrode
8
shunt capacitance
8
graphene
6
electrode
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!