Role of plant neurotransmitters in salt stress: A critical review.

Plant Physiol Biochem

National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India. Electronic address:

Published: June 2024

AI Article Synopsis

  • Neurotransmitters like acetylcholine, serotonin, and melatonin, commonly known for their roles in animals, are also found in many plants, yet their functions in plant growth and development are not well understood.
  • Researchers are focusing on how these neurotransmitters influence plant metabolism, growth, and the ability to tolerate salt stress.
  • This study aims to enhance our understanding of neurotransmitter signaling in plants, possibly opening up new research avenues in plant biology, particularly regarding how plants cope with environmental challenges.

Article Abstract

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108601DOI Listing

Publication Analysis

Top Keywords

salt stress
8
growth development
8
neurotransmitter signaling
8
role plant
4
neurotransmitters
4
plant neurotransmitters
4
neurotransmitters salt
4
stress critical
4
critical review
4
review neurotransmitters
4

Similar Publications

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Preliminary assessment of seed heteromorfism as an adaptive strategy of Colobanthus quitensis under saline conditions.

Sci Rep

December 2024

Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile.

Colobanthus quitensis is known for enduring extreme conditions, such as high salinity in Antarctica, making it an excellent model for studying environmental stress. In plant families, variations in seed color heteromorphism have been linked to various germination under stress conditions. Preliminary laboratory observations indicated that dark brown seeds of C.

View Article and Find Full Text PDF

Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).

View Article and Find Full Text PDF

Salinity stress adversely affects wheat growth and productivity, necessitating effective mitigation strategies. This study investigates the combined impact of ascorbic acid (AsA), silver nanoparticles (NPs), and Salvadora oleoides aqueous leaf extract (LE) on wheat tolerance to salinity stress. A randomized complete design (RCD) was employed with fourteen treatments: T1 (5 mM AsA), T2 (10 mM AsA), T3 (20 ppm AgNPs), T4 (40 ppm AgNPs), T5 (5% S.

View Article and Find Full Text PDF

The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses.

Plant Physiol Biochem

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:

Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!