Cerebellar and Olfactory Bulb Perturbations Induced by Vanadium Neurotoxicity in the African Giant Rat (Cricetomys gambianus, Waterhouse).

Niger J Physiol Sci

Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.

Published: December 2023

The African giant rat, AGR (Cricetomys gambianus) is a unique rodent known for its keen sense of smell which has enabled its use in the diagnosis of tuberculosis and demining activities in war torn countries. This keen sense of smell and the ability to navigate tight spaces are skills modulated by the olfactory bulb and cerebellum. While the brain is generally susceptible to environmental pollutants such as heavy metals, vanadium has predilection for these two brain regions. This work was thus designed to investigate the probable neurotoxic effect of vanadium on the neuronal cytoarchitecture of the cerebellum and olfactory bulb in this rodent. To achieve this, twelve adults male AGRs were divided into two groups (vanadium and control groups) and were given intraperitoneal injections of 3mg/kg body weight sodium metavanadate and normal saline respectively for 14 days. After which they were sacrificed, and brains harvested for histological investigations using Nissl and Golgi staining techniques. Results from our experiment revealed Purkinje cell degeneration and pyknosis as revealed by a lower intact-pyknotic cell (I-P) ratio, higher pyknotic Purkinje cell density and poor dendritic arborizations in the molecular layer of the cerebellum in the vanadium treated group. In the olfactory bulb, neuronal loss in the glomerular layer was observed as shrunken glomeruli. These neuronal changes have been linked to deficits in motor function and disruption of odor transduction in the olfactory bulb. This work has further demonstrated the neurotoxic effects of vanadium on the cerebellum and olfactory bulb of the AGR and the likely threat it may pose to the translational potentials of this rodent. We therefore propose the use of this rodent as a suitable model for better understanding vanadium induced olfactory and cerebellar dysfunctions.

Download full-text PDF

Source
http://dx.doi.org/10.54548/njps.v38i2.3DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
24
african giant
8
giant rat
8
cricetomys gambianus
8
keen sense
8
sense smell
8
cerebellum olfactory
8
purkinje cell
8
vanadium
7
bulb
6

Similar Publications

Olfactory Dysfunction in Allergic Rhinitis.

Clin Rev Allergy Immunol

December 2024

Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Olfactory dysfunction (OD) can have serious consequences as it hinders individuals from detecting important warning signals like smoke, spoiled food, and gas leaks. This can significantly impact their nutritional status, eating satisfaction, and overall quality of life. Allergic rhinitis (AR) is a common disease that greatly affects the quality of life and can lead to a decrease, distortion, or complete loss of olfactory ability.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is a progressive irreversible dementia characterized by beta-amyloid protein plaque deposition and hyperphosphorylation of tau forming neurofibrillary tangles, and neurodegeneration. An emerging theory posits that infections could be one of the triggering factors in AD development and progression. Multiple lines of evidence have linked Chlamydia pneumoniae (Cp), a gram-negative obligate intracellular bacterium with AD.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) manifests early in the olfactory system, yet its precise role in the pathophysiology of AD remains elusive. This study aims to elucidate the progression of olfactory dysfunction in AD by investigating the dysregulation of the adenosine 2A receptor (A2AR) and its potential involvement in the formation of abnormal plaques and tangles. A2AR plays a pivotal role in modulating synaptic transmission and neuroinflammation by regulating both neurons and glial cells.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.

Background: Lewy body disease (LBD) often co-occurs with Alzheimer's (AD), resulting in more significant cognitive decline than AD or LBD alone. LBD's hallmarks, asyn-positive Lewy bodies and neurites, propagate from the enteric system or olfactory bulb to the amygdala, which acts as a gatekeeper for spread to other structures. Initially, LBD appears in the central or cortical nuclei, reflecting brainstem or olfactory origins.

View Article and Find Full Text PDF

Introduction: This study aims to investigate the progressive impact of chronic iron overload on the olfactory bulb, a region significantly affected in early neurodegenerative diseases like Parkinson's and Alzheimer's. The focus is on understanding how iron accumulation leads to oxidative stress, mitochondrial dysfunction, and neuronal damage over time in middle-aged mice.

Method: The mice were continuously administered FC for a duration of 16 weeks, and the olfactory behavior of the mice was observed at intervals of 4 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!