Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234443PMC
http://dx.doi.org/10.1002/advs.202400479DOI Listing

Publication Analysis

Top Keywords

tactile sensor
20
sensor array
20
all-printed finger-inspired
8
finger-inspired tactile
8
detection reconstruction
8
array developed
8
tactile
7
sensor
5
array
5
array microscale
4

Similar Publications

A tactile perception method with flexible grating structural color.

Natl Sci Rev

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.

Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors.

View Article and Find Full Text PDF

Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications.

Nat Commun

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, PR China.

Skin-like sensors capable of detecting multiple stimuli simultaneously have great potential in cutting-edge human-machine interaction. However, realizing multimodal tactile recognition beyond human tactile perception still faces significant challenges. Here, an extreme environments-adaptive multimodal triboelectric sensor was developed, capable of detecting pressure/temperatures beyond the range of human perception.

View Article and Find Full Text PDF

Design of Double Strains in Triboelectric Nanogenerators toward Improving Human Behavior Monitoring.

Langmuir

January 2025

Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China.

Triboelectric nanogenerators (TENGs) offer a convenient means to convert mechanical energy from human movement into electricity, exhibiting the application prospects in human behavior monitoring. Nevertheless, the present methods to improve the device monitoring effect are limited to the design of a triboelectric material level (control of electron gain and loss ability). As compared with reported work, we improve the monitoring effect of TENG-based tactile sensors by optimizing the structure of the electrode/triboelectric material interface by means of a multiple strains mechanism.

View Article and Find Full Text PDF

This study develops biomimetic strategies for slip prevention in prosthetic hand grasps. The biomimetic system is driven by a novel slip sensor, followed by slip perception and preventive control. Here, we show that biologically inspired sensorimotor pathways can be restored between the prosthetic hand and users.

View Article and Find Full Text PDF

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!