The use of internal catalysts has emerged as a pivotal design principle to facilitate dynamic exchanges within covalent adaptable networks (CANs). Polybenzoxazines, specifically, have shown considerable potential in generating vitrimers through thermally induced transesterification reactions catalyzed internally by tertiary amines. This study aims to investigate the chemical complexities of transesterification reactions within benzoxazine vitrimers. To achieve this, model molecules using various phenolic acids and amino-alcohol derivatives were synthesized as precursors. The structure of these model molecules was fully elucidated by using nuclear magnetic resonance (NMR). Differential scanning calorimetry (DSC) and rheology experiments evidenced the accelerated network formation of the precursors due to the presence of aliphatic -OH groups. Thermogravimetric analysis coupled with microcomputed gas chromatography (TGA-μGC) was used to provide evidence of transesterification reactions. The results showed that the spatial proximity between tertiary amine and hydroxyl groups significantly enhances the rate exchange, attributed to a neighboring group participation (NGP) effect. Interestingly, kinetic experiments using complementary NMR techniques revealed the thermal latency of the tertiary amine of benzoxazine toward transesterification reactions as its opening is needed to trigger the dynamic exchange. The study highlights the crucial role of steric hindrance and tertiary amine basicity in promoting the dynamic exchange in an internally catalyzed system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100009 | PMC |
http://dx.doi.org/10.1021/jacs.4c02153 | DOI Listing |
Sci Rep
January 2025
Bio-Circular-Green-Economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.
View Article and Find Full Text PDFFoods
December 2024
Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.
Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
Configurational differences in monosaccharides determine the products and selectivity of the transesterification reaction with lipase-B (CAL-B). The β-anomers of peresterified pyranose monosaccharides tend to yield anomeric deprotection products, while the α-anomers preferentially react at the sixth or fourth position. CAL-B differentiates between enantiomers, either reacting more rapidly with d-enantiomers of monosaccharides or having a different selectivity based on the enantiomer.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi Japan 466-8555
We recently proposed a concept of self-transformation from thermoplastic polyesters into vitrimers intermolecular bond exchange as the cross-linking reaction. Key was the use of polyesters bearing hydroxyl side groups, which were cross-linked without additional cross-linkers through intermolecular transesterification in the presence of a suitable catalyst. In our previous study, a linear polyester was synthesized as the starting polymer by reacting dithiol monomers containing ester bonds (2-SH) with diepoxy monomers (2-epoxy) a thiol-epoxy reaction, generating hydroxyl side groups along the polyester chain.
View Article and Find Full Text PDFHeliyon
December 2024
The Petroleum and Petrochemical College, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
Glycerol, a by-product of biodiesel production through transesterification, presents an opportunity for biodiesel industries to transform surplus glycerol into high-value chemical products. This study focuses on the development of a series of propyl sulfonic acid functionalized (PrSOH) SBA-15 catalysts, synthesized by direct synthesis of 3-mercaptopropyltrimethoxysilane (MPTMS) and tetraethoxysilane (TEOS) in an acidic medium. The catalysts were evaluated for acetylation of glycerol with acetic acid under conditions optimized through response surface methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!