The present work describes a preclinical trial (, and ) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin finite element modeling, manufacturing of the device prototype, device implantation, and laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software. Next, the biomechanical performance of the implant was predicted numerically by simulating physiological load conditions in a digital twin finite element model of the sheep mandible. This allowed for possible redesigning of the implant prior to commencing experimentation. Then, two types of polymeric biomaterials were used to manufacture the mandibular scaffold implants: poly ether ether ketone (PEEK) and poly ether ketone (PEK) printed with fused deposition modeling (FDM) and selective laser sintering (SLS), respectively. Then, after being implanted for 13 weeks vivo, the implant and surrounding bone tissue was harvested and microCT scanned to visualize and quantify neo-tissue formation in the porous space of the scaffold. Finally, the implant and local bone tissue was assessed by laboratory mechanical testing to quantify the osteointegration. The protocol consists of six component procedures: (i) scaffold design and finite element analysis to predict its biomechanical response, (ii) scaffold fabrication with FDM and SLS 3D printing, (iii) surface treatment of the scaffold with plasma immersion ion implantation (PIII) techniques, (iv) ovine mandibular implantation, (v) postoperative sheep recovery, euthanasia, and harvesting of the scaffold and surrounding host bone, microCT scanning, and (vi) laboratory mechanical tests of the harvested scaffolds. The results of microCT imagery and 3-point mechanical bend testing demonstrate that PIII-SLS-PEK is a promising biomaterial for the manufacturing of scaffold implants to enhance the bone-scaffold contact and bone ingrowth in porous scaffold implants. MicroCT images of the harvested implant and surrounding bone tissue showed encouraging new bone growth at the scaffold-bone interface and inside the porous network of the lattice structure of the SLS-PEK scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.4c00262 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!