Background: Parkinson's disease is a neurodegenerative disorder that is characterized by a degeneration of the dopaminergic system. Dopamine transporter (DAT) positron emission tomography (PET) imaging has emerged as a powerful and non-invasive method to quantify dopaminergic function in the living brain. The PET radioligand, [F]FE-PE2I, a cocaine chemical derivative, has shown promising properties for in vivo PET imaging of DAT, including high affinity and selectivity for DAT, excellent brain permeability, and favorable metabolism. The aim of the current study was to scale up the production of [F]FE-PE2I to fulfil the increasing clinical demand for this tracer.
Results: Thus, a fully automated and GMP-compliant production procedure has been developed using a commercially available radiosynthesis module GE TRACERLab FX2 N. [F]FE-PE2I was produced with a radiochemical yield of 39 ± 8% (n = 4, relative [F]F delivered to the module). The synthesis time was 70 min, and the molar activity was 925.3 ± 763 GBq/µmol (250 ± 20 Ci/µmol). The produced [F]FE-PE2I was stable over 6 h at room temperature.
Conclusion: The protocol reliably provides a sterile and pyrogen-free GMP-compliant product.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065837 | PMC |
http://dx.doi.org/10.1186/s41181-024-00269-9 | DOI Listing |
ACS Nano
January 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Purpose: Radionuclide-labeled fibroblast activation protein inhibitor (FAPI) is an emerging tumor tracer. We sought to assess the uptake and diagnostic performance of F-FAPI-42 PET/CT compared with simultaneous 2-deoxy-2[F]fluoro-D-glucose (F-FDG) PET/CT in primary and metastatic lesions in patients with malignant digestive system neoplasms and to determine the potential clinical benefit.
Procedures: Forty-two patients (men = 30, women = 12, mean age = 56.
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
Purpose: Estrogen receptor (ER) expression and heterogeneity affect endocrine therapy efficacy. F-fluoroestradiol (F-FES) PET/CT is an effective non-invasive method to analyze systemic ER expression. This study aimed to examine the predictive/prognostic value of F-FES PET/CT for patients treated with endocrine therapy plus cyclin-dependent kinase 4/6 (CDK4/6) inhibitors.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
Remote, digital cognitive testing on an individual's own device provides the opportunity to deploy previously understudied but promising cognitive paradigms in preclinical Alzheimer's disease (AD). The Boston Remote Assessment for NeuroCognitive Health (BRANCH) captures a personalized learning curve for the same information presented over seven consecutive days. Here, we examined BRANCH multi-day learning curves (MDLCs) in 167 cognitively unimpaired older adults (age = 74.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Department of Radiology, Brain Health Imaging Institute (A.R-F, J.I, S.P, M.d, G.C.C) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA; the Department of Neurology (A.R-F), Pontificia Universidad Javeriana, Bogota, Colombia; the Department of Radiology, Division of Molecular Imaging and Therapeutics (A.R-F, J.I) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA; the Department of Neurology (D.Z, MM, L.R, A.S.N) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA.
Amyloid-targeting therapy has recently become widely available in the U.S. for the treatment of patients with symptomatic mild Alzheimer's disease (AD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!