Activated carbon is an attractive adsorbent for capturing various environmental pollutants, including CO. Herein, an optimal synthesis and impressive performance of activated carbon made from Balanites aegyptiaca (Desert date) seed shells is reported, which is an abundant agricultural waste in the Middle East and Africa. The synthesis route involved pretreating the biomass with KOH and heating it under a suitable temperature profile. An optimal KOH-to-biomass ratio and multi-stage carbonization yielded activated carbon with a surface area above 3000 m/g and an average pore size of nearly 4.1 nm. At 0 °C, this activated carbon exhibited CO uptake of 11.3 mmol g that surpassed the uptake capacity of previously reported activated carbons. The selectivity towards CO was also found to be significantly higher compared to other gases. Thus, the present approach demonstrates an efficient conversion of agricultural waste to activated carbon for capturing CO and other environmental contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400141 | DOI Listing |
Microb Pathog
December 2024
Davis Pharmaceutical Laboratories, 121, industrial triangle area, kahuta road, Islamabad.
This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Laboratório de Cerâmica Técnica (CerTec), Grupo de Biomateriais E Materiais Nanoestruturados, Programa de Pós-Graduação Em Ciência E Engenharia de Materiais (PPGCEM), Universidade Do Extremo Sul Catarinense, Criciúma, SC, CEP 88806-000, Brazil.
Magnetic composites (MC) prepared from magnetite nanoparticles (MNP) and activated carbon from bovine bone (AC) in different proportions (75/25, 50/50, and 25/75) were used as catalysts in the photo-Fenton process to degrade methylene blue (MB) in aqueous solution. The materials were prepared by the citrate-nitrate sol-gel synthesis method and used as catalysts in the photo-Fenton process. The photocatalytic tests were performed in a cylindrical reactor with a 4.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFSci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFArtif Organs
December 2024
Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA.
Background: Liver disease is a growing burden. Transplant organs are scarce. Extracorporeal liver support systems (ELSS) are a bridge to transplantation for eligible patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!