A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Negative variance components and intercept-slope correlations greater than one in magnitude: How do such "non-regular" random intercept and slope models arise, and what should be done when they do? | LitMetric

AI Article Synopsis

  • RIAS models are often used for analyzing longitudinal data but can lead to problematic estimates like negative variance components, which we refer to as "pseudo-variances" and "pseudo-correlations."
  • Factors such as a small number of measurements, short follow-up periods, and large residual variance can make it more likely for non-regular RIAS models to occur, especially due to model misspecification or omitted random effects.
  • While non-regular RIAS models may not apply universally, they can sometimes provide valid results for fixed effects, offering a solution when other methods could lead to bias.

Article Abstract

Statistical models with random intercepts and slopes (RIAS models) are commonly used to analyze longitudinal data. Fitting such models sometimes results in negative estimates of variance components or estimates on parameter space boundaries. This can be an unlucky chance occurrence, but can also occur because certain marginal distributions are mathematically identical to those from RIAS models with negative intercept and/or slope variance components and/or intercept-slope correlations greater than one in magnitude. We term such parameters "pseudo-variances" and "pseudo-correlations," and the models "non-regular." We use eigenvalue theory to explore how and when such non-regular RIAS models arise, showing: (i) A small number of measurements, short follow-up, and large residual variance increase the parameter space for which data (with a positive semidefinite marginal variance-covariance matrix) are compatible with non-regular RIAS models. (ii) Non-regular RIAS models can arise from model misspecification, when non-linearity in fixed effects is ignored or when random effects are omitted. (iii) A non-regular RIAS model can sometimes be interpreted as a regular linear mixed model with one or more additional random effects, which may not be identifiable from the data. (iv) Particular parameterizations of non-regular RIAS models have no generality for all possible numbers of measurements over time. Because of this lack of generality, we conclude that non-regular RIAS models can only be regarded as plausible data-generating mechanisms in some situations. Nevertheless, fitting a non-regular RIAS model can be acceptable, allowing unbiased inference on fixed effects where commonly recommended alternatives such as dropping the random slope result in bias.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.10070DOI Listing

Publication Analysis

Top Keywords

rias models
28
non-regular rias
28
variance components
12
models
11
rias
9
intercept-slope correlations
8
correlations greater
8
greater magnitude
8
models negative
8
parameter space
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!