A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Retrofitting the Heart: Explaining the Enigmatic Septal Thickening in Hypertrophic Cardiomyopathy. | LitMetric

Hypertrophic cardiomyopathy is the most common genetic cardiac disease and is characterized by left ventricular hypertrophy. Although this hypertrophy often associates with sarcomeric gene mutations, nongenetic factors also contribute to the disease, leading to diastolic dysfunction. Notably, this dysfunction manifests before hypertrophy and is linked to hypercontractility, as well as nonuniform contraction and relaxation (myofibril asynchrony) of the myocardium. Although the distribution of hypertrophy in hypertrophic cardiomyopathy can vary both between and within individuals, in most cases, it is primarily confined to the interventricular septum. The reasons for septal thickening remain largely unknown. In this article, we propose that alterations in muscle fiber geometry, present from birth, dictate the septal shape. When combined with hypercontractility and exacerbated by left ventricular outflow tract obstruction, these factors predispose the septum to an isometric type of contraction during systole, consequently constraining its mobility. This contraction, or more accurately, this focal increase in biomechanical stress, prompts the septum to adapt and undergo remodeling. Drawing a parallel, this is reminiscent of how earthquake-resistant buildings are retrofitted with vibration dampers to absorb the majority of the shock motion and load. Similarly, the heart adapts by synthesizing viscoelastic elements such as microtubules, titin, desmin, collagen, and intercalated disc components. This pronounced remodeling in the cytoskeletal structure leads to noticeable septal hypertrophy. This structural adaptation acts as a protective measure against damage by attenuating myofibril shortening while reducing cavity tension according to Laplace Law. By examining these events, we provide a coherent explanation for the septum's predisposition toward hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.123.011435DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
12
septal thickening
8
left ventricular
8
hypertrophy
6
retrofitting heart
4
heart explaining
4
explaining enigmatic
4
septal
4
enigmatic septal
4
thickening hypertrophic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!