Supercapacitors have substantially altered the landscape of sophisticated energy storage devices with their exceptional power density along with prolonged cyclic stability. On the contrary, their energy density remains low, requiring research to compete with conventional battery storage devices. This study addresses the disparities between energy and power densities in energy storage technologies by exploring the integration of layered double hydroxides (LDH) and highly conductive materials to develop an innovative energy storage system. Four electrodes were fabricated a hydrothermal process using NiCoCu LDH, Ag-citrate, PANI, and f-SWCNTs. The optimal electrode demonstrated exceptional electrochemical properties; at 0.5 A g, it possessed specific capacitances of 807 F g, twice as high as those of the pure sample. The constructed asymmetric supercapacitor device attained energy densities of 62.15 W h kg and 22.44 W h kg, corresponding to power densities of 1275 W kg and 11 900 W kg, respectively. Furthermore, it maintained 100% cyclic stability and a coulombic efficiency of 95% for 4000 charge-discharge cycles. The concept of a supercapacitor of the hybrid grade was reinforced by power law investigations, which unveiled -values in the interval of 0.5 to 1. This research emphasizes the considerable potential of supercapacitor-grade NiCoCu LDH/Ag-citrate-PANI-f-SWCNTs nanocomposites for superior rate performance, robust cycle stability, and enhanced energy storage capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061783 | PMC |
http://dx.doi.org/10.1039/d4ra01324g | DOI Listing |
Recent Pat Nanotechnol
January 2025
State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), Chengdu 610031, China.
One-dimensional (1D) vanadium-based nanostructures have advantageous properties and are showing emerging critical applications in the fields of catalysis, smart devices, and electrochemical energy storage. We herein timely gave an overview of the 1D vanadium pentoxide (VO)-based nanomaterials for these promising applications, especially regarding the merits of different synthetic methods, structures and properties combined with recent research frontiers in advanced energy storage, including batteries, supercapacitors and like. The high capacity, high rate and flexibility of 1D VO-based nanomaterials endow them with great potential in high-energy-density, high-power energy devices and specific/harsh environments.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Qingdao Industrial Energy Storage Technology Institute, Department of Energy Science and Energy Technology, Songling Road, 189, 266101, Qingdao City, CHINA.
Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea.
Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!