A comprehensive review of advances in hepatocyte microencapsulation: selecting materials and preserving cell viability.

Front Immunol

Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Published: May 2024

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061843PMC
http://dx.doi.org/10.3389/fimmu.2024.1385022DOI Listing

Publication Analysis

Top Keywords

liver failure
20
hepatocyte transplantation
20
hepatocyte microencapsulation
16
hepatocyte
11
cell viability
8
xenogeneic hepatocyte
8
larger mammals
8
encapsulation materials
8
liver
7
transplantation
7

Similar Publications

Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.

Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.

View Article and Find Full Text PDF

Introduction: Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) is a severe hypersensitivity reaction rarely documented in patients with multiple myeloma (MM).

Methods: In our retrospective study of 108 newly diagnosed MM (NDMM) patients from January 2021 to October 2023, we identified four cases of DRESS. The clinical characteristics such as clinical manifestations, laboratory results, treatment and outcome were analyzed.

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection, hospitalisation and death in adults.

Methods: Based on evidence regarding the impact of RSV on adult populations at risk for severe infection and the efficacy and safety of RSV vaccines, the Portuguese Society of Pulmonology, the Portuguese Association of General and Family Medicine, the Portuguese Society of Cardiology, the Portuguese Society of Infectious Diseases and Clinical Microbiology, the Portuguese Society of Endocrinology, Diabetes and Metabolism, and the Portuguese Society of Internal Medicine endorses this position paper with recommendations to prevent RSV-associated disease and its complications in adults through vaccination.

Conclusion: The RSV vaccine is recommended for people aged ≥50 years with risk factors (chronic obstructive pulmonary disease, asthma, heart failure, coronary artery disease, diabetes, chronic kidney disease, chronic liver disease, immunocompromise, frailty, dementia, and residence in a nursing home) and all persons aged ≥60 years.

View Article and Find Full Text PDF

Background: Liver malignancies present substantial challenges to surgeons due to the extensive hepatic resections required, frequently resulting in posthepatectomy liver failure. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was designed to increase the resectable liver volume, yet it is associated with significant mortality and morbidity rates. Recently, minimally invasive techniques have been incorporated into ALPPS, with the potential to improve the procedure's safety profile whilst maintaining efficacy.

View Article and Find Full Text PDF

Background: Primary hyperoxaluria type 1 (PH 1) is a rare genetic condition due to mutations in the AGXT gene. This leads to an overproduction of oxalate in the liver. Hyperoxaluria often causes kidney stones, nephrocalcinosis, and chronic kidney disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!