Background: Resistance to oxaliplatin (L-OHP) is a major barrier in the treatment of colorectal cancer (CRC). Autophagy is the main cause of L-OHP tolerance in CRC cells.

Method: The human colon cancer cell lines HCT116 and SW480 were treated with L-OHP to obtain the drug-resistant cell lines HCT116/L-OHP and SW480/L-OHP, respectively. To probe the relationship between autophagy and L-OHP tolerance of growth factor independent 1 (Gfi-1) and high-mobility group protein 1 (HMGB1) in CRC cells, gene knockout or overexpression was performed, and Western blotting was used to determine the levels of drug tolerance interrelated proteins. Transwell and CCK-8 assays were employed to analyze the proliferation of cancer cells. Immunofluorescence detection of LC3 reflected autophagy levels. Finally, the relationship between Gfi-1 and HMGB1 was detected by chromatin immunoprecipitation (ChIP).

Result: Compared to normal CRC cells, L-OHP-tolerant CRC cells exhibited greater autophagy (8.2 times greater in HCT116/L-OHP cells and 7.4 times greater in SW480/L-OHP cells). In addition, we detected low levels of Gfi-1 (0.6-fold for HCT116/L-OHP cells and 0.4-fold for SW480/L-OHP cells), and OE-Gfi-1 decreased HMGB1 levels (0.6-fold for HCT116/L-OHP + OE-Gfi-1 cells and 0.5-fold for SW480/L-OHP + OE-Gfi-1 cells). The inhibition of Gfi-1 further enhanced cell viability (1.7 times in HCT116+sh-Gfi-1 cells and 1.2 times in SW480+sh-Gfi-1 cells) and invasion (1.8 times in HCT116+sh-Gfi-1 cells and 2.1 times in SW480+sh-Gfi-1 cells) in CRC cells, thus promoting oxaliplatin resistance in these cells. The autophagy inhibitor 3-MA reversed the above effects. Furthermore, we noted that Gfi-1 can restrain HMGB1 expression by binding to its promoter (0.5 times in HCT116+OE-Gfi-1 cells and 0.5 times in SW480+OE-Gfi-1 cells). The inhibitory influence of 3-MA on HMGB1 reversed the influence of Gfi-1 on autophagy and malignant progression in CRC cells.

Conclusion: Our study suggested that Gfi-1 inhibited HMGB1 to reduce CRC autophagy levels, increasing CRC sensitivity to L-OHP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058305PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29859DOI Listing

Publication Analysis

Top Keywords

crc cells
16
cells
10
crc
9
gfi-1
8
autophagy
8
oxaliplatin resistance
8
colorectal cancer
8
crc autophagy
8
l-ohp tolerance
8
cell lines
8

Similar Publications

To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level.

View Article and Find Full Text PDF

Discovery of novel xanthohumol C derivatives regulating XRCC2 transcription and expression for the treatment of colorectal cancer.

Bioorg Med Chem

December 2024

State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China. Electronic address:

X-ray repair cross-complementing 2 (XRCC2), a critical protein in homologous recombination (HR), plays a significant role in the occurrence, progression, and drug resistance of colorectal cancer (CRC). In this study, a series of xanthohumol C derivatives were synthesized, and their anticancer activity was evaluated. The results revealed that A33 demonstrated the potent anticancer activity and effectively inhibited the proliferation of CRC cells in vitro.

View Article and Find Full Text PDF

Solute transport family 7A member 7 (SLC7A7) mutations contribute to lysinuric protein intolerance (LPI), which is the mechanism of action that has been extensively studied. In colorectal cancer (CRC), SLC7A7 appears to play a role, but the features and mechanisms are not yet well understood. Survival was analyzed using the Kaplan-Meier analysis.

View Article and Find Full Text PDF

This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!