Chemosensation is important for the survival and reproduction of animals. The odorant binding proteins (OBPs) are thought to be involved in chemosensation together with chemosensory receptors. While OBPs were initially considered to deliver hydrophobic odorants to olfactory receptors in the aqueous lymph solution, recent studies suggest more complex roles in various organs. Here, we use transgenes to systematically analyze the expression patterns of all 52 members of the gene family and 3 related chemosensory protein genes in adult , focusing on chemosensory organs such as the antenna, maxillary palp, pharynx, and labellum, and other organs such as the brain, ventral nerve cord, leg, wing, and intestine. The OBPs were observed to express in diverse organs and in multiple cell types, suggesting that these proteins can indeed carry out diverse functional roles. Also, we constructed 10 labellar-expressing mutants, and obtained behavioral evidence that these OBPs may be involved in bitter sensing. The resources we constructed should be useful for future OBP gene family research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058302 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e29358 | DOI Listing |
Bull Entomol Res
January 2025
Ningxia Academy of Agriculture and Forestry Sciences, Institute of Plant Protection, Yinchuan, China.
Insect odorant-binding proteins (OBPs) are the key proteins in insect olfactory perception and play an important role in the perception and discrimination of insects. is a polyphagous pest and seriously harms the quality and yield of fruits, flowers and crops worldwide. Therefore, the discovery of OBPs has greatly improved the understanding of behavioural response that mediates the chemoreception of .
View Article and Find Full Text PDFFood Res Int
January 2025
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:
The interaction between proteins and aroma compounds significantly impacts cheese flavor retention during processing. However, it is still unknown how cheese proteins and the aldehyde aroma compounds (AACs) interact. This study aims to clarify the interaction mechanisms between the AACs (benzaldehyde, 2-methylpropanal, 2-methylbutanal and 3-methylbutanal) and β-casein (β-CN) using SPME-GC/MS, multi-spectroscopy techniques, and molecular dynamics simulations.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China. Electronic address:
The study investigated the perceptual interaction between two types of Rose damascena essential oil and two types of Angelica dahurica root essential oil. Using gas chromatography-olfactometer (GC-O) and gas chromatography-mass spectrometer (GC-MS), 24 and 25 aromatic compounds in Rose damascena essential oil and Angelica dahurica root essential oil were identified and quantified, respectively. Based on flavor dilution (FD) values and odor activity values (OAVs), 10 important aroma compounds in Rose damascena essential oil and 6 in Angelica dahurica root essential oil were identified.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
University College Dublin, School of Biology and Environmental Science, Belfield, Dublin 4, Ireland.
Chemical signaling can play a crucial role in predator-prey dynamics. Here, we present evidence that ink from the common cuttlefish (Sepia officinalis) targets olfactory receptor proteins in shark, potentially acting as a predator deterrence. We apply in silico 3D docking analysis to investigate the binding affinity of various odorant molecules to shark olfactory receptors of two shark species: cloudy catshark (Scyliorhinus torazame) and white shark (Carcharodon carcharias).
View Article and Find Full Text PDFInsects
November 2024
Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an 716000, China.
The plum fruit moth (PFM), , and the oriental fruit moth (OFM), , are closely related fruit moth species that severely damage fruit trees in Rosaceae. Both species share common primary sex pheromone components 8-12:Ac and 8-12:Ac. The secondary sex pheromone components of PFMs consist of 8-12:OH, 8-14:Ac, and 10-14:Ac, while those of OFMs include 8-12:OH and 12:OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!