Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Women tend to face many problems throughout their lives; cervical cancer is one of the most dangerous diseases that they can face, and it has many negative consequences. Regular screening and treatment of precancerous lesions play a vital role in the fight against cervical cancer. It is becoming increasingly common in medical practice to predict the early stages of serious illnesses, such as heart attacks, kidney failure, and cancer, using machine learning-based techniques. To overcome these obstacles, we propose the use of auxiliary modules and a special residual block, to record contextual interactions between object classes and to support the object reference strategy. Unlike the latest state-of-the-art classification method, we create a new architecture called the Reinforcement Learning Cancer Network, "RL-CancerNet", which diagnoses cervical cancer with incredible accuracy. We trained and tested our method on two well-known publicly available datasets, SipaKMeD and Herlev, to assess it and enable comparisons with earlier methods. Cervical cancer images were labeled in this dataset; therefore, they had to be marked manually. Our study shows that, compared to previous approaches for the assignment of classifying cervical cancer as an early cellular change, the proposed approach generates a more reliable and stable image derived from images of datasets of vastly different sizes, indicating that it will be effective for other datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061669 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e29913 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!