Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximize fitness and ensure reproductive success. We used the arctic alpine perennial to explore the role of prolonged cold exposure on adventitious rooting. We exposed plants to 4°C for different durations and scored the presence of adventitious roots on the main stem and axillary branches. Our physiological studies demonstrated the presence of adventitious roots after 21 weeks at 4°C saturating the effect of cold on this process. Notably, adventitious roots on the main stem developing in specific internodes allowed us to identify the gene regulatory network involved in the formation of adventitious roots in cold using transcriptomics. These data and histological studies indicated that adventitious roots in stems initiate during cold exposure and emerge after plants experience growth promoting conditions. While the initiation of adventitious root was not associated with changes of auxin response and free endogenous auxin level in the stems, the emergence of the adventitious root primordia was. Using the transcriptomic data, we discerned the sequential hormone responses occurring in various stages of adventitious root formation and identified supplementary pathways putatively involved in adventitious root emergence, such as glucosinolate metabolism. Together, our results highlight the role of low temperature during clonal growth in alpine plants and provide insights on the molecular mechanisms involved at distinct stages of adventitious rooting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062184PMC
http://dx.doi.org/10.3389/fpls.2024.1352830DOI Listing

Publication Analysis

Top Keywords

adventitious roots
20
adventitious root
16
adventitious
12
adventitious rooting
12
clonal growth
8
growth alpine
8
arctic alpine
8
alpine plants
8
cold exposure
8
presence adventitious
8

Similar Publications

From Taxus to paclitaxel: Opportunities and challenges for urban agriculture to promote human health.

Plant Physiol Biochem

January 2025

Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China. Electronic address:

Conifers of the genus Taxus are environmentally friendly plants with significant medicinal and ecological value, contributing to the enhancement of urban living environments. Paclitaxel, a compound found in Taxus, has garnered particular research interest owing to its potent anti-cancer effects. However, traditional methods of extracting paclitaxel from Taxus are not only inefficient, but also destructive and unsustainable, posing the major risk of Taxus extinction.

View Article and Find Full Text PDF

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Willows (genus ) are increasingly used in operational-scale ecosystem reclamation; however, different opinions exist regarding the optimal cutting size for planting under field conditions. We compared the survival of field-planted willow cuttings sourced from upland and lowland areas with varying diameters and lengths across two growing seasons. Cuttings were grouped into 15 size classes with different diameters (0.

View Article and Find Full Text PDF

In Vitro Rooting of Poplar: Effects and Metabolism of Dichlorprop Auxin Ester Prodrugs.

Plants (Basel)

January 2025

Laboratory for Applied In Vitro Plant Biotechnology, Ghent University, 9000 Ghent, Belgium.

Efficient adventitious root formation is essential in micropropagation. Auxin prodrugs, inactive precursors that convert into active auxins within the plant, offer potentially improved rooting control and reduced phytotoxicity. This study investigated the efficacy of dichlorprop ester (DCPE), commercialized as Corasil and Clemensgros (originally intended to increase grapefruit size), in promoting in vitro root initiation in the model plant × , compared to its hydrolyzed form DCP and the related compound C77.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!