The genus , a group of perennial ornamental herbs in the family Orchidaceae, is widely distributed in tropical and subtropical regions. Many species of the genus have been commonly used as traditional herbal medicines for the treatment of menorrhagia, haemoptysis, traumatic bleeding, snake bites, and pneumonia. This review describes the ornamental value of plants of the genus and summarises the chemical constituents and pharmacological activities reported during the last decade. The main chemical constituents of this genus are phenolic acids, alkaloids, flavonoids, etc. Most phenolic acids and alkaloids have a nervogenic acid skeleton, and most alkaloids also have a pyrrolizidine skeleton. Extracts from the genus plants showed significant haemostatic, antitumor, anti-inflammatory, hypolipidemic, antioxidant, and antibacterial activities. This paper proposed ideas and research directions for the future study of plants in the genus , providing valuable information for the development of new drugs and promoting their utilisation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2024.2347460DOI Listing

Publication Analysis

Top Keywords

plants genus
8
chemical constituents
8
phenolic acids
8
acids alkaloids
8
genus
7
mini review
4
review species
4
species ornamental
4
ornamental genus
4
genus considerable
4

Similar Publications

Unlabelled: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown.

View Article and Find Full Text PDF

subsp. () possesses a -specific uter embrane rotein XAC1347 (OMP) that exerts a role in the expression of the type III secretion system for pathogenicity. In this study, we reported that OMP was required for salt stress tolerance and cell membrane integrity, as well as the expression of the genes for the production of extracellular polysaccharides.

View Article and Find Full Text PDF

The expansion and loss of specific olfactory genes in relatives of parasitic lice, the stored-product psocids (Psocodea: Liposcelididae).

BMC Genomics

January 2025

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.

Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.

View Article and Find Full Text PDF

Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution.

BMC Genomics

January 2025

State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.

View Article and Find Full Text PDF

From Taxus to paclitaxel: Opportunities and challenges for urban agriculture to promote human health.

Plant Physiol Biochem

January 2025

Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China. Electronic address:

Conifers of the genus Taxus are environmentally friendly plants with significant medicinal and ecological value, contributing to the enhancement of urban living environments. Paclitaxel, a compound found in Taxus, has garnered particular research interest owing to its potent anti-cancer effects. However, traditional methods of extracting paclitaxel from Taxus are not only inefficient, but also destructive and unsustainable, posing the major risk of Taxus extinction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!