Predator-prey interactions are a fundamental part of community ecology, yet the relative importance of consumptive and nonconsumptive effects (NCEs) (defined as a risk-induced response that alters prey fitness) has not been resolved. Theory suggests that the emergence and subsequent predominance of consumptive or NCEs depend on the given habitat's complexity as well as predator hunting mode and spatial domain sizes of both predator and prey, but their relative influence on the outcome of predator-prey interactions is unknown. We built agent-based models in NetLogo to simulate predator-prey interactions for three hunting modes-sit-and-wait, sit-and-pursue, and active-while concurrently simulating large versus small spatial domain sizes for both predators and prey. We studied (1) how hunting mode and spatial domain size interact to influence the emergence of consumptive or NCEs and (2) how, when NCEs do dominate, hunting mode and spatial domain separately or additively determine prey shifts in time, space, and habitat use. Our results indicate consumptive effects only dominate for active predators when prey habitat domains overlap completely with the predator's spatial domain and when sit-and-wait and sit-and-pursue predators and their prey both have large spatial domains. Prey are most likely to survive when they shift their time but most frequently shift their habitat. Our paper helps to better understand the underlying mechanisms that drive consumptive or NCEs to be most dominant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.4316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!