The coronavirus-2 has led to a global pandemic of COVID-19 with an outbreak of severe acute respiratory syndrome leading to worldwide quarantine measures and a rise in death rates. The objective of this study is to propose a green, sensitive, and selective densitometric method to simultaneously quantify remdesivir (REM) in the presence of the co-administered drug linezolid (LNZ) and rivaroxaban (RIV) in spiked human plasma. TLC silica gel aluminum plates 60 F254 were used as the stationary phase, and the mobile phase was composed of dichloromethane (DCM): acetone (8.5:1.5, v/v) with densitometric detection at 254 nm. Well-resolved peaks have been observed with retardation factors (R) of 0.23, 0.53, and 0.72 for REM, LNZ, and RIV, respectively. A validation study was conducted according to ICH Q2 (R1) Guidelines. The method was rectilinear over the concentration ranges of 0.2-5.5 μg/band, 0.2-4.5 μg/band and 0.1-3.0 μg/band for REM, LNZ and RIV, respectively. The sensitivities of REM, LIN, and RIV were outstanding, with quantitation limits of 128.8, 50.5, and 55.8 ng/band, respectively. The approach has shown outstanding recoveries ranging from 98.3 to 101.2% when applied to pharmaceutical formulations and spiked human plasma. The method's greenness was assessed using Analytical Eco-scale, GAPI, and AGREE metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063142PMC
http://dx.doi.org/10.1038/s41598-024-56923-4DOI Listing

Publication Analysis

Top Keywords

spiked human
12
human plasma
12
rem lnz
8
lnz riv
8
eco-friendly cost-effective
4
cost-effective hptlc
4
hptlc method
4
method quantification
4
quantification covid-19
4
covid-19 antiviral
4

Similar Publications

This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.

View Article and Find Full Text PDF

Optimization of the Extraction Protocol for Pacific Ciguatoxins from Marine Products Prior to Analysis Using the Neuroblastoma Cell-Based Assay.

Mar Drugs

January 2025

Institut de Recherche pour le Développement (IRD), UMR 241-SECOPOL (IFREMER, ILM, IRD, UPF), P.O. Box 6570, 98702 Faa'a, Tahiti, French Polynesia.

Ciguatera poisoning (CP) is caused by the consumption of marine products contaminated with ciguatoxins (CTXs) produced by dinoflagellates of the genus . Analytical methods for CTXs, involving the extraction/purification of trace quantities of CTXs from complex matrices, are numerous in the literature. However, little information on their effectiveness for nonpolar CTXs is available, yet these congeners, contributing to the risk of CP, are required for the establishment of effective food safety monitoring programs.

View Article and Find Full Text PDF

Microbial contamination is an important factor threatening the safety of Chinese medicine preparations, and microfluidic detection methods have demonstrated excellent advantages in the application of rapid bacterial detection. In our study, a novel optical biosensor was developed for the rapid and sensitive detection of in traditional Chinese medicine on a microfluidic chip. Immune gold@platinum nanocatalysts (Au@PtNCs) were utilized for specific bacterial labeling, while magnetic nano-beads (MNBs) with a novel high-gradient magnetic field were employed for the specific capture of bacteria.

View Article and Find Full Text PDF

Electrochemical Glucose Sensor Based on Dual Redox Mediators.

Biosensors (Basel)

December 2024

Cofoe Medical Technology Co., Ltd., No. 816 Zhenghua Road, Changsha 410021, China.

Electrochemical glucose sensor holds significant promise for the monitoring of blood glucose levels in diabetic patients. In this study, we proposed a novel electrochemical glucose sensor based on 1,10-Phenanthroline-5,6-dione (PD)/Ru(III) as a dual redox mediator. The synergistic effect of PD and Ru(III) was utilized to efficiently facilitate the electron transfer between the enzyme-active center and the electrode.

View Article and Find Full Text PDF

A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!