DNA-Based Replication of Programmable Colloidal Assemblies.

Small

Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland.

Published: August 2024

Nature uses replication to amplify the information necessary for the intricate structures vital for life. Despite some successes with pure nucleotide structures, constructing synthetic microscale systems capable of replication remains largely out of reach. Here, a functioning strategy is shown for the replication of microscale particle assemblies using DNA-coated colloids. By positioning DNA-functionalized colloids using capillary forces and embedding them into a polymer layer, programmable sequences of patchy particles are created that act as a primer and offer precise binding of complementary particles from suspension. The strings of complementary colloids are cross-linked, released from the primer, and purified via flow cytometric sorting to achieve a purity of up to 81% of the replicated sequences. The replication of strings of up to five colloids and non-linear shapes is demonstrated with particles of different sizes and materials. Furthermore, a pathway for exponential self-replication is outlined, including preliminary data that shows the transfer of patches and binding of a second-generation of assemblies from suspension.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202400180DOI Listing

Publication Analysis

Top Keywords

dna-based replication
4
replication programmable
4
programmable colloidal
4
colloidal assemblies
4
assemblies nature
4
replication
4
nature replication
4
replication amplify
4
amplify intricate
4
intricate structures
4

Similar Publications

Comparative analysis of predicted DNA secondary structures infers complex human centromere topology.

Am J Hum Genet

December 2024

Laboratory of Genome Evolution, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy. Electronic address:

Article Synopsis
  • - The text discusses how secondary structures, which are unique arrangements of nucleic acids caused by internal interactions, can occur in both RNA and single-stranded DNA, impacting key processes like DNA replication and transcription, thus affecting genome stability.
  • - The study focuses on the comparison of secondary structures in linear single-stranded DNA from different specialized human loci, such as centromeres and coding regions, revealing that centromeres have the highest complexity and instability in their secondary structures.
  • - Findings indicate that the intricate self-hybridizing properties of centromeric repeats may lead to chromosome missegregation when chromatin is disrupted, highlighting the functional importance of these structures in various DNA processes like transcription and recombination.
View Article and Find Full Text PDF

Replication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging.

View Article and Find Full Text PDF

Toward the Eradication of Herpes Simplex Virus: Vaccination and Beyond.

Viruses

September 2024

Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

Article Synopsis
  • * A review of literature identified 12 potential vaccines, including promising candidates like SL-V20, HF10, VC2, and mRNA-1608 that are showing strong preclinical results.
  • * Although vaccines such as GEN-003 and HerpV showed initial promise in clinical trials, they haven’t progressed further, but ongoing research is aiming to achieve a breakthrough in HSV prevention and treatment.
View Article and Find Full Text PDF

More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate.

View Article and Find Full Text PDF

The greasy finger region of DTMUV NS1 plays an essential role in NS1 secretion and viral proliferation.

Poult Sci

December 2024

Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education of the People's Republic of China, Chengdu 611130, China. Electronic address:

Duck Tembusu virus (DTMUV) of the Orthoflavivirus genus poses a significant threat to waterfowl aquaculture. Nonstructural protein 1 (NS1), a multifunctional glycoprotein, exists in various oligomeric forms and performs diverse functions. The greasy finger (GF) region within NS1 of other flaviviruses has been shown to be a crucial component of the hydrophobic protrusion aiding in anchoring NS1 to the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!