Background: Abdominal adhesions are the most common surgical complication and without reliable prophylactics. This study presents a novel rat model for abdominal adhesions and reports pilot results of human placental stem cell (hPSC)-based therapies.
Methods: Forty-four (n = 44) male Sprague-Dawley rats (250-350 g) were used in the experiment. Of these, thirty-eight (n = 38) were included in a preliminary data set to determine a minimum treatment effect. Adhesions were created in a reproducible model to the abdominal wall and between organs. Experimental groups included the control group (Model No Treatment, MNT), Plasmalyte A (Media Alone, MA, 10 mL), hPSC (5 × 10 cells/10 mL Plasmalyte A), hPSC-CM (hPSC secretome, conditioned media) in 10 mL Plasmalyte A, Seprafilm™ (Baxter, Deerfield, IL), and sham animals (laparotomy only). Treatments were inserted intraperitoneally (IP) and the study period was 14 days post-operation. Results are reported as the difference between means of an index statistic (AIS, Animal Index Score) and compared by ANOVA with pairwise comparison.
Results: The overall mean AIS was 23 (SD 6.16) for the MNT group with an average of 75% of ischemic buttons involved in abdominal adhesions. Treatment groups MA (mean overall AIS 17.33 SD 6.4), hPSC (mean overall AIS 13.86 SD 5.01), hPSC-CM (mean overall AIS 13.13 SD 6.15), and Seprafilm (mean overall AIS 13.43 SD 9.11) generated effect sizes of 5.67, 9.14, 9.87, and 9.57 decrease in mean overall AIS, respectively, versus the MNT.
Discussion: The presented rat model and scoring system represent the clinical adhesion disease process. hPSC-based interventions significantly reduce abdominal adhesions in this pilot dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211869 | PMC |
http://dx.doi.org/10.1111/trf.17859 | DOI Listing |
Gels
November 2024
Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary.
Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair.
View Article and Find Full Text PDFCureus
November 2024
Biochemistry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, IND.
Background: Laparoscopic cholecystectomy (LC) is currently the gold standard of care for managing gallstone disease. The time taken to perform LC depends on both patient-related and surgeon-related factors. Recognizing factors associated with difficult LC (DLC) can aid in appropriate surgeon selection and judicious scheduling of cases.
View Article and Find Full Text PDFAdv Mater
December 2024
Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Hydrogels with mechanical performances similar to load-bearing tissues are in demand for in vivo applications. In this work, inspired by the self-assembly behavior of amphiphilic polymers, polyurethane-based tough hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure through in situ water-induced microphase separation strategy are developed, in which poly(ethylene glycol)-based polyurethane (PEG-PU, hydrophilic) and poly(ε-caprolactone)-based polyurethane (PCL-PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG-PU and PCL-PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Departmentof Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Background: Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.
Methods: Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis.
BMC Urol
December 2024
Department of Urology, 920th Hospital of Joint Logistic Support Force, Kunming, 650000, China.
Background: To analyze the safety and efficacy of microsurgical subinguinal varicocelectomy(MSV) performed with and without preservation of all testicular arteries and lymphatic system.
Methods: All of the 98 patients with varicocele who underwent MSV were included in the analysis. Fifty-eight male patients surgically underwent MSV with preservation of all testicular arteries and lymphatic system(Group 1).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!