Background: Detection methods based on aptamer probes have great potential and progress in the field of rapid detection of heavy metal ions. However, the unstable conformation of aptamers often results in poor sensitivity due to the dissociation of aptamer-target complex in real environments.

Results: In this study, we developed a locking aptamer probe and combined it with AgInZnS quantum dots for the first time to detect cadmium ions. When cadmium ions are combined with the probe, the cadmium ions are fixed in the core-locking position, forming a stable cavity structure. The limit of detection (LOD) was achieved at a concentration of 6.9 nmol L, with a broad detection range from 10 nmol L to 1000 μmol L, and good recovery rates (92.93%-102.8 %) were achieved in aquatic product testing. The locking aptamer probe with stable conformation effectively enhances the stability of the aptamer-target complex and remains good stability in four buffer environments as well as a 600 mmol L salt solution; it also exhibits good stability at pH 6.5-7.5 and temperatures ranging from 25 °C to 35 °C.

Significance: Overall, our study presented a general, simple, and cost-effective strategy for stabilizing aptamer conformations, and used for highly sensitive detection of cadmium ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342577DOI Listing

Publication Analysis

Top Keywords

cadmium ions
16
aptamer conformations
8
heavy metal
8
aptamer-target complex
8
locking aptamer
8
aptamer probe
8
good stability
8
detection
6
aptamer
5
ions
5

Similar Publications

The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.

View Article and Find Full Text PDF

Fast and Sensitive Detection of Anti-SARS-CoV-2 IgG Using SiO@Au@CDs Nanoparticle-Based Lateral Flow Immunoassay Strip Coupled with Miniaturized Fluorimeter.

Biomolecules

December 2024

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.

The development of a novel strategy for the measurement of SARS-CoV-2 IgG antibodies is of vital significance for diagnosis and effect of vaccination evaluation. In this investigation, an SiO@Au@CDs nanoparticle (NP)-based lateral flow immunoassay (LFIA) strip was fabricated and coupled with a miniaturized fluorimeter. The morphology features and particle sizes of the SiO@Au@CDs NPs were characterized carefully, and the results indicated that the materials possess monodisperse, uniform, and spherical structures.

View Article and Find Full Text PDF

Acidic stability and mechanisms of soil cadmium immobilization by layered double hydroxides intercalated with mercaptosuccinic acid.

Environ Res

January 2025

State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing 211135, China. Electronic address:

Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.

View Article and Find Full Text PDF

Lignocellulose biosorbents: Unlocking the potential for sustainable environmental cleanup.

Int J Biol Macromol

January 2025

Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:

Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.

View Article and Find Full Text PDF

Authentication of glass beads from Cultural Heritage: An interdisciplinary and multi-analytical approach.

Talanta

January 2025

Instituto de Historia (IH-CCHS), CSIC, C/ Albasanz 26-28, 28037, Madrid, Spain. Electronic address:

Analysis of glass-based artworks is important for authentication purposes. In recent years, there have been rapid advancements and improvements in the characterization of glass objects using different analytical approaches. The present study presents an interdisciplinary and multi-analytical authentication approach that provides useful tools and markers to unmask possible imitations, counterfeiting, and forgeries in Cultural Heritage glass beads by comparing the composition of historical and modern glass beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!