In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsmc.2024.02.011 | DOI Listing |
Genes (Basel)
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.
View Article and Find Full Text PDFFront Aging
January 2025
Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia.
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
Hypoxia is a key feature of the tumor microenvironment that leads to the failure of many chemotherapies and induces more aggressive and resistant cancer phenotypes. Up to date, there are very few compounds and treatments that can target hypoxia. BE-43547A from Streptomyces sp.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST); Thuwal, Saudi Arabia.
Coastal deoxygenation poses a critical threat to tropical coral reefs. Dissolved oxygen (DO) depletion can cause hypoxia-induced stress and mortality for scleractinian corals. Coral hypoxic responses are species-specific and likely modulated by the duration and severity of low-DO conditions, although the physiological mechanisms driving hypoxia tolerance are not fully understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer with limited treatment options, often associated with Merkel cell polyomavirus (MCPyV) and marked by hypoxic tumor microenvironments that promote resistance to therapies. Belzutifan, an FDA-approved hypoxia-inducible factor-2α (HIF-2α) inhibitor, has shown promise in inhibiting tumor growth; however, its clinical efficacy is hindered by its low solubility, rapid clearance, and limited bioavailability. In this study, we present a strategy using porous silicon (pSi) microparticles and nanoparticles as carriers for the sustained delivery of benzoate to MCC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!